Автоматизация и комплексная механизация машиностроения. Автоматизация и механизация машиностроения. Методика ИС-ПРО для машиностроения

ИС-ПРО для предприятий машиностроения

PDM - Product Data Management (система управления данными о продукции)
CAPP - Computer-Aided Process Planning (автоматизированная система технологической подготовки производства)
ДСЕ - деталь или сборочная единица
ССЗ - сменно-суточное задание
ССИ - структура и состав изделий
ПКМ - покупные материалы
ПКИ - покупные комплектующие изделия

Система ИС-ПРО обладает архитектурными и функциональными возможностями, необходимыми для решения задач управления основным и вспомогательным производством на предприятиях машиностроения.

Основой для управления производством на предприятиях отрасли является система конструкторских и технологических данных о продукции.

ИС-ПРО по структуре, сложности и гибкости своих информационных объектов достаточным образом соответствует структуре, сложности и гибкости объектов PDM и CAPP систем (контур PDM), с которыми необходимо обеспечивать взаимодействие по процессам и данным в рамках отраслевых решений.

Основные задачи

ERP функционал любой системы управления машиностроительным предприятием (в части управления себестоимостью, снабжением, сбытом и т.д.) может иметь практический смысл, только если обеспечены качество, полнота и своевременность донесения изменений из контура PDM в контур ERP.

ИС-ПРО предлагает набор возможностей, как архитектурно-функциональных, так и сервисных, для решения основных управленческих задач. Решение этих задач обеспечивает качественную реализацию любого дополнительного функционала.

Основные задачи должны быть логически выделены, как с точки зрения использования предприятием, так и с точки зрения процесса внедрения. Это следующие задачи:

Управление нормативно-справочной информацией в части структуры и состава изделий (включая нормы расхода материалов), номенклатуры покупных материалов и изделий (ПКМ и ПКИ);

  • Управление нормативно-справочной информацией в части маршрутно-операционных технологий;
  • Материальное планирование производства;
  • Управление материально-техническим снабжением;
  • Управление расходом ПКМ и ПКИ в производстве;
  • Планирование производства деталей и сборочных единиц (межцеховой и внутрицеховой контуры);
  • Планирование агрегатной и окончательной сборки;
  • Диспетчирование и контроль хода производства деталей и сборочных единиц (ДСЕ);
  • Управление комплектованием сборки и выпуска готовых изделий;
  • Диспетчирование и контроль хода сборки;
  • Учет, анализ и оптимизация трудовых затрат производственного персонала;
  • Управление качеством и обеспечение материальной и операционной прослеживаемости.

Конечно же, этим перечнем не ограничиваются задачи автоматизации на машиностроительном предприятии. Но именно эти задачи практически на 100% определяют уровень рентабельности и конкурентоспособности предприятия. Эти задачи являются базовыми, потому что вся остальная автоматизация управления предприятием невозможна без их решения.

Типизированные решения этих задач на базе ИС-ПРО существуют в широком диапазоне требуемой сложности и полноты.

Методика ИС-ПРО для машиностроения

Практическая ценность данных для управления машиностроительным предприятием опирается на полноту, точность и своевременность информации о производственном цикле изделий. Поэтому качество и мощность системы управления напрямую зависит от глубины отражения оперативных производственных процессов и детальности информации о составе и технологии изделий.

Методика ИС-ПРО предполагает глубокую проработку и отражение оперативных процессов (процедур) в производстве и технических данных об изделиях.

Таким образом, в основе методики - приоритет оперативного контура управления и глубины технических данных об изделии.

Оперативное управление

Под оперативным управлением производством будем понимать диспетчирование и контроль хода производства изделий с точностью до технологических операций, в разрезе партий запуска ДСЕ и производственно-диспетчерских заказов. Это задача управления операционным потоком в производстве.

Также, в рамках оперативного управления производством, необходимо управлять процессом движения, расхода и преобразования материалов, заготовок и ДСЕ, осуществлять диспетчерский контроль формирования сборочных комплектов в разрезе номеров изделий. Это задача управления материальным потоком в производстве.

Таким образом, решение задачи оперативного управления производством сводится к решению двух задач:

  • Диспетчирование и Контроль Хода Производства (ДКХП) или управление операционным потоком.
  • Прослеживаемость Материальных Компонентов в Производстве (ПМКП) или управление материальным потоком.

Организационно-производственная структура

В рамках системы данных ИС-ПРО, важнейшим элементом является организационно-производственная структура, в рамках которой исполняются производственные циклы изделий.

Например:

  • Тип производства: сложное, многономенклатурное, точное машиностроение.
  • Виды производственных процессов: металлозаготовительное производство, механообрабатывающие производства, смежные производства (гальваника, термическая обработка и др.), сборка.
  • Организационно-производственная структура и основные этапы производственного процесса отражают специфику типа производства, видов производственных процессов и маршрут изготовления готового изделия.

Элементы методики

Методика ИС-ПРО основана:

  • во-первых, на иерархии управляющих документов (механизмов), запускаемых в работу с последующим контролем и регистрацией исполнения.
  • во-вторых, на ключевых процессах планово-производственной деятельности.
  • в-третьих, на объектах контроля хода производства, таких как производственно-диспетчерские заказы, партии запуска.

МЕХАНИЗМЫ

Данная иерархия отражает ключевые механизмы планово-производственного процесса: планирование, с учетом наиболее общих характеристик предприятия; трансформация плана в формы, пригодные для диспетчерского контроля; генерация оперативных производственных заданий на уровнях партий ДСЕ и операций (на основе планово-диспетчерских форм).

КЛЮЧЕВЫЕ ПРОЦЕССЫ

ОБЪЕКТЫ КОНТРОЛЯ

  • Производственные партии ДСЕ
  • Производственно-диспетчерские заказы
  • Производственные подразделения

Приведены сведения по различным аспектам и видам автоматизации машиностроения, в том числе по комплексной автоматизации проектирования и изготовления изделий, автоматизации технологических процессов сборки. Значительное

внимание уделено особенностям проектирования технологических процессов в условиях автоматизированного производства, математическому моделированию в технологических системах, автоматизации проектирования технологических
процессов и управлению техническими объектами и процессами. Рассмотрены вопросы формирования виртуальных производственных систем на базе распределенных производственных систем, использования CALS-технологий и информационных технологий при проектировании и сопровождении изделий на этапах их жизненного цикла.
Для студентов, обучающихся по направлениям подготовки «Технология, оборудование и автоматизация машиностроительных производств», «Конструкторско-технологическое обеспечение машиностроительных производств», «Автоматизированные
технологии и производства». Может быть полезен специалистам, работающим в области машиностроительных технологий.

СПИСОК ЛИТЕРАТУРЫ:

1. Автоматизация проектирования технологических процессов в машиностроении / Под ред. Н.М. Капустина. — М.: Машиностроение, 1985.

2. Автоматизация проектирования технологических процессов и средств оснащения / Под ред. А.Г. Раковича, Г.К. Горанский, Л.В. Губич, В.И. Махнач и др. — Минск, ИТК АН Беларусь, 1997.

3. Автоматизированные системы проектирования технологических процессов механосборочного производства / Под ред. Н.М. Капустина. — М.: Машиностроение, 1979.

4. Андреев Г.Н., Новиков В.Н., Схиртладзе А.Г. Проектирование технологической оснастки машиностроительного производства. — М.: Высшая школа, 2002.

5. Андрющенко В.А. Следящие системы автоматизированного сборочного оборудования. — Л.: Машиностроение, 1979.

6. Башарин А.В., Новиков В.А., Соколовский Г.Г. Управление электроприводами. — Л.: Энергоиздат. Ленинградское отделение, 1982.

7. Вентцель Е.С. Исследование операций: задачи, примеры, методология. — М.: Наука, 1988.

8. Вороненко В.П., Схиртладзе А.Г., Брюханов В.П. Автоматизированное производство. — М.: Высшая школа, 2001.

9. Гибкие производственные комплексы / Под ред. П.Н. Белянина, В.А. Лещенко. — М.: Машиностроение, 1984.

10. Гжиров Р.И., Серебреницкий П.П. Программирование обработки на станках с ЧПУ. — Л.: Машиностроение, 1990.

11. Диалоговое проектирование технологических процессов. Н.М. Капустин, В.В. Павлов, Л.А. Козлов и др. — М.: Машиностроение, 1983.

12. Евгенев Г.Б. Системология инженерных знаний. — М.: Изд-во. МГТУ им.
Баумана, 2001.

13. Капустин Н.М. Разработка технологических процессов обработки деталей на станках с помощью ЭВМ. — М.: Машиностроение, 1976.

14. Капустин Н.М., Васильев Г.Н. Автоматизация конструкторского и технологического проектирования. Система автоматизированного проектирования. В 9 кн. Кн. 6. — М.: Высшая школа, 1986.

15. Капустин Н.М., Дьяконова Н.П., Кузнецов П.М. Автоматизация машиностроения / Под ред. Н.М. Капустина. — М.: Высшая школа, 2002.

16. Капустин Н.М., Кузнецов П.М. Структурный синтез при автоматизированном проектировании технологических процессов деталей с использованием генетических алгоритмов // Информационные технологии, 1998. № 4. С. 34-37.

15. Капустин Н.М., Кузнецов П.М. Формирование виртуальной производственной системы для выпуска изделий в распределенных системах //Машиностроитель. 2002. № 6. С. 42-46.

16. Козырев Ю.Г. Промышленные роботы: Справочник. — М.: Машиностроение, 1988.

17. Кузнецов М.М., Усов Б.А., Стародубов B.C. Проектирование автоматизированного производственного оборудования. — М.: Машиностроение, 1987.

18. Металлорежущие станки и автоматы / Под. ред. А.С. Проникова. — М.: Машиностроение 1981.

19. Куропаткин П.В. Оптимальные и адаптивные системы. — М.: Высшая школа, 1980.

20. Моделирование робототехнических систем и гибких автоматизированных производств / Под ред. Н.М. Макарова. В 9 кн. Кн. 5. — М.: Высшая школа, 1986.

22. Машиностроение. Энциклопедия. Раздел III. Технология производства машин / Под ред. П.Н. Белянина. — М.: Машиностроение, 2000.

23. Мухин А.В. Новые концепции организации промышленного производства // Наука производству. 2001. №5. С. 2 - 7.

24. Норенков И.П. Принципы построения и структура. Системы автоматизированного проектирования. В 9 кн. Кн. 1. — М.: Высшая школа, 1986.

25. Норенков И.П. Разработка САПР. — М.: Изд-во МГТУ им. Н. Э. Баумана. 1994.

26. Норенков И.П. Основы автоматизированного проектирования. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2000.

27. Основы автоматизации машиностроительного производства / Под. ред. Ю.М. Соломенцева. — М.: Высшая школа, 1999.

28. Норенков И.П., Кузьмин П.К. Информация поддержки наукоемких изделий. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2002.

29. Павлов В.В. Типовые математические модели в САПР ТП. — М.: Мосстанкин, 1989.

30. Павлов В. В. CALS-технологии в машиностроении (математические модели). — М.: Изд-во МГТУ Станкин, 2002.

31. Программное управление станками / Под ред. В.Л. Сосонкина. — М.: Машиностроение, 1981.

32. Павлов В.В. CALS-технологии в машиностроении (математические модели). — М.: Изд-во МГТУ Станкин, 2002.

33. Роботизированные производственные комплексы / Под ред. Ю.Г. Козырева, А.А. Кудинова. — М.: Машиностроение, 1987.

34. Справочник технолога машиностроителя / Под ред. A.M. Дальского. В 2 т. — М.: Машиностроение, 2001. «Издательство машиностроение - 1».

35. Схиртладзе А.Г., Соколов В.И., Фадеев В.А. Металлорежущие станки с программным управлением и подготовки программ. — Харьков: Высшая школа, 1992.

36. Технология машиностроения. Основы технологии машиностроения / Под ред. A.M. Дальского. В 2 т. Т. 1. — М.: Изд-во МГТУ им. Н. Э. Баумана, 1997.

37. Технология машиностроения. Производство машин / Под ред. Г.Н. Мельникова. В 2 т. Т. 2. - М.: Изд-во МГТУ им. Н.Э. Баумана, 1998.

38. Технология производства гусеничных и колесных машин / Под ред. Н.М. Капустина. — М.: Машиностроение, 1989.

39. Трудоношин В.А., Пивоварова Н.В. Математические модели технических объектов. В 9 кн. Кн. 4. — М.: Высшая школа, 1986.

Создание материально-технической базы коммунизма

Переход к коммунизму немыслим без изобилия материальных и духовных благ: промышленных товаров, продовольствия, жилищ, предметов культурного обихода и мест отдыха трудящихся. Это предполагает гигантский рост производства во всех отраслях промышленности, сельского хозяйства, транспорта и строительства. Фактически речь идет о новом огромном скачке в развитии производительных сил.

Громадные возможности и преимущества социалистической системы делают решение этой величественной задачи вполне реальным, причем в короткие исторические сроки.

Главное направление в борьбе за быстрый рост производства - завершение механизации всех трудовых процессов и вытеснение ручного труда из всех отраслей народного хозяйства. Опыт показывает, что, как бы ни был высок уровень механизации тех или иных звеньев производства, пока между ними вклиниваются ручные операции, общая экономическая

эффективность новой техники остается недостаточной и производительность труда растет медленно.

Подлинное решение может дать лишь комплексная механизация, т. е. применение машин не только в основных, но и во вспомогательных процессах производства. Широкое осуществление комплексной механизации и автоматизации - это основной путь технического прогресса, ведущий к созданию материально-технической базы коммунизма. Уже семилетним планом развития народного хозяйства СССР (1959 - 1965 гг.) ставится задача вытеснить тяжелый ручной труд на основе завершения комплексной механизации производственных процессов в промышленности, сельском хозяйстве, строительстве, на транспорте, на погрузочно-разгрузочных работах, в коммунальном хозяйстве.

Принципиальное значение комплексной механизации состоит в том, что она требует создания в каждой отрасли производства системы взаимно дополняющих друг друга машин, а это решающим образом подготовляет автоматизацию - высшую форму современного машинного производства. Автоматизация означает осуществление производственного процесса без участия человека, а лишь под его контролем. Если механизация избавляет человека от бремени тяжелого физического труда, то автоматизация освобождает его и от излишнего нервного напряжения.

В ряде областей производства автоматизация становится прямой технической необходимостью. Скорости многих технологических процессов настолько возросли, а требования точности повысились, что человек с его органами чувств не в состоянии непосредственно управлять такими процессами. Их могут контролировать только автоматические устройства.

Подлинный переворот в области автоматизации несут с собой электронные машины. Они заменяют труд человека в такой области, как контроль и управление автоматической системой машин. Современное автоматизированное производство - это система усовершенствованных машин и станков, управляемых электронными вычислительными машинами. При помощи электронного «мозга» можно управлять производственным процессом по весьма сложной программе. Передача машинам счетных, аналитических и регулирующих функций освобождает человека от многих однообразных и утомительных умственных усилий. Пока в Советском Союзе и других социалистических странах имеется лишь немного автоматических линий, автоматизированных цехов и отдельные заводы-автоматы. Но уже развиваются отрасли, где весь технологический процесс основан на автоматике (атомная промышленность, некоторые отрасли химического производства, гидроэлектростанции).



В настоящее время в технической политике социалистиче-

ских государств взят решительный курс на широкое внедрение автоматизации в разные отрасли народного хозяйства. Достаточно сказать, что только в советском машиностроении за ближайшие семь лет предполагается ввести в эксплуатацию 1300 автоматических линий. Предусматривается автоматизация основных производственных процессов в решающих отраслях индустрии, особенно в цветной металлургии, в химической, нефтяной, легкой, пищевой и целлюлозно-бумажной промышленности.

Тенденции в развитии автоматического производства определились уже достаточно ясно: от автоматических станков, линий и цехов дело идет к заводам-автоматам, а затем к полной автоматизации целых отраслей промышленности. В будущем возникнет новый тип народного хозяйства, где автоматизированное производство будет преобладающим. Такой, и только такой, может быть производственная техника коммунизма, цель которого завершить освобождение человека от тяжелого, монотонного труда и сберечь его умственную энергию для творческих целей.

Социалистическая автоматизация ничем не угрожает трудящимся. Наоборот, они приветствуют ее, так как она сильно облегчает их труд и позволяет сократить рабочий день без снижения заработной платы. Капиталистическая автоматизация, как известно, вызывает серьезную тревогу в рабочем классе, ибо она влечет за собой рост безработицы и падение заработной платы значительных масс трудящихся.

Конечно, социалистическая автоматизация также вызывает сокращение количества рабочих на том или ином предприятии или даже в целой отрасли промышленности. Но это не создает проблемы занятости, так как высвобождаемые в результате автоматизации рабочие тут же находят место на новых предприятиях и в новых отраслях производства. Заботу о трудовом устройстве, переобучении и повышении квалификации работников берет на себя социалистическое государство.

В зависимости от размера производственной программы различают производство 3-х основных типов: единичное, серийное, массовое.

В массовом производстве с постоянным объемом выпуска как правило применяется высокопроизводительное специальное оборудование, объединенное автоматическими транспортно-загрузочными механизмами периодического действия, что в комплексе представляет собой жесткие АЛ.

Крупносерийное производство характеризуется ограниченным временем выпуска продукции, определенным сроком ее морального старения. Подготовка такого производства должна осуществляться в короткие сроки. В этих условиях к основному и вспомогательному оборудованию предъявляют требования высокой производительности и над-ти, переналадки и возможности перекомпоновки сравнительно легкими способами. Снижение стоимости подготовки производства зависит от соблюдения этих требований. Этим требованиям удовлетворяют автоматическое и полуавтоматическое оборудование и прежде всего агрегатные станки и станки с ЧПУ, которые с помощью ПР можно объединить в переналаживаемые несинхронные гибкие АЛ.

Серийное многономенклатурное производство в котором длительность выпуска деталей одного типа колеблется от нескольких дней до нескольких недель до недавнего времени имело парк оборудования из переналаживаемых и широкоуниверсальных станков с ручным управлением.

Задача автоматизации решалась применением копировальных станков и быстропереналаживаемых станков полуавтоматов с кулачковыми механизмами. В настоящее время имеются различные тенденции автоматизации этого производства:

    Применение переналаживаемых агрегатных станков, объединенных в переналаживаемые АЛ с гибкой связью (несинхронные).

    Создание переналаживаемых АЛ для групповой обработки деталей сменными наладками. (эк-ки выгодны только при достаточно больших сериях)

    Создание АЛ с программным управлением станков с ЧПУ.

    Создание автоматизированных производств из станков с ЧПУ с управлением от ЭВМ на среднем и на верхнем уровнях.

Последние два направления представляются наиболее перспективными, т.к. в них заложены предпосылки реализации качественно нового уровня производства. (ГПС).

Одним из путей эффективного решения комплексной автоматизации серийного производства является создание типовых автоматизированных технологических комплексов (АТК) различают назнач. для выполнения наиболее распространенных в МС операций, включая заготовительные и сборочные. Такие комплекса должны отвечать требованиям:

    Обеспечивать надежное функционирование при высоком уровне автоматизации.

    Охватывать основные ТП МС производства включая заготовительные и сборочные операции.

    Иметь возможность стыковки между собой и с типовыми транспортными системами при различных компоновках автоматизированных участков и АЛ.

    Обеспечить широкую приспосабливаемость к изменяющимся условиям производства. Технологические комплексы должны обеспечивать возможность выбора того уровня автоматизации, который экономически оправдан.

Перспективным для автоматизации среднесерийного и мелкосерийного производств является создание типовых роботизированных комплексов и ГПМ.

Мелкосерийное производство, требующее переналадки в пределах хар-а наиболее низким уровнем производительности труда и автоматизации ПП.

В мелкосерийном производстве номенклатура деталей закрепленных за станком может быть достаточно широкой, поэтому автоматизация в таком производстве должна развиваться за счет расширения методов групповой обработки и создания РТК и ГПМ, программируемых по 1-ой детали и обрабатываемые в дальнейшем.

Единичное производство – основа универсальные станки с ручным управлением. Могут быть отдельные средства автоматизации. Широкая универсальность и высокая гибкость, т.е. возможность быстрой переналадки являются главными преимуществами таких станков. Основной их недостаток – малая производительность и выполнение рабочим всего необходимого цикла управления, работой станка.

Данная научная дисциплина возникла в нашем государстве в двадцатых годах прошлого века в связи с быстрым ростом отечественного машиностроения. Ее развитию способствовал широкий круг советских ученых и инженеров и новаторов производства. Возникновение ее базировалось на трудах П.Л. Чебышева, И.А. Тиме и других ученых, а также в советское время ученых - технологов: Соколовского, Кована, Маталина, Балакшина, Новикова. Дальнейшее формирование и развитие этого предмета отражено в трудах И.И. Артоболевского, В.И.Дикушина, А.П. Владзиевского, Л.Н. Кошкина, Г.А. Шаумяна и других отечественных ученых.

Автоматизация производственных процессов - одно из направлений развития народного хозяйства. Это связано с тем, что автоматизация производства открывает неограниченные возможности для производительности общественного труда. Кроме повышения производительности труда она облегчает и коренным образом меняет характер труда, делает его творческим, стирает разницу между умственным и физическим трудом.

Механизация и автоматизация позволяет повысить качество продукции и безопасность и коэффициент использования оборудования, а в некоторых случаях интенсифицировать режим работы оборудования.

Проблема автоматизации производства выдвигает также социально-экономические вопросы. В современном обществе автоматизация производства это средство получения максимальной прибыли и орудие борьбы с конкурентами. Эти и ряд других положительных факторов заставляют обращать серьезное внимание на механизацию и автоматизацию.

Реальный экономический эффект, получаемый в результате механизации и автоматизации, во многом зависит от того, в каких конкретных условиях и для решения каких производственных задач используются средства и методы механизации и автоматизации. На механизацию и, особенно, автоматизацию машиностроительного производства необходимы значительные капитальные затраты. Если объект автоматизации выбран удачно, эти затраты окупаются быстро. В короткие сроки достигается высокая экономическая эффективность, а если идти по пути «сплошной» автоматизации, то вместо экономии можно получить убытки. Поэтому каждый специалист-машиностроитель должен иметь четкое представление о технических возможностях средств механизации и автоматизации и уметь правильно их выбирать в каждом конкретном случае с наибольшей эффективностью.


2. Основные понятия и определения: механизация, автоматизация, единичная и комплексная механизация и автоматизация. Стадии автоматизации

Механизацией называется направление развития производства, при котором физический труд рабочего, связанный с выполнением производственного процесса или его составных частей, передается машине. Примерами механизации являются: использование патронов с пневматическим и гидравлическим приводом, вместо обычного винтового перемещения кулачков вручную с помощью ключа; перемещение пинолей задних бабок токарных станков, быстрый подвод суппорта или стола станка с помощью электро-, пневмо- или гидросуппортов. Механизация облегчает труд рабочего. При этом действия, направленные главным образом на управление производственным процессом, остаются за рабочим. Они включаются в цикл работы машины. Механизация может быть либо частичной, либо полной или, как ее называют, комплексной.

Частичная механизация - это механизация части движений, необходимых для осуществления производственного процесса: либо главного движения, либо вспомогательных и установочных движений, либо движений, связанных с перемещением изделий с одной позиции на другую.

Полная или комплексная механизация - механизация всех основных, вспомогательных, установочных и транспортных движений, которые выполняются по ходу производственного процесса. При комплексной механизации обслуживающий персонал осуществляет только оперативное управление производственным процессом, включение и выключение в нужные моменты требуемых механизмов и управление режимом и характером их работы.

Дальнейшее развитие механизации приводит к автоматизации производства. Т.е. автоматизация- это такое направление развития производства, при котором человек освобождается не только от тяжелого физического труда, но и от оперативного управления механизмами или машинами.

Различается частичная и комплексная автоматизация. Понятие «частичная автоматизация» связывается с осуществлением автоматизации только одного структурного компонента из числа всех систем. Например, автоматизация отдельных элементов общего цикла работы станков. Примеры этого вида автоматизации: оснащение станков загрузочными устройствами, автоматизация подвода и отвода суппорта, стола, хранение, а также уборка стружки и т.д., т.е. оснащение устройствами, частично автоматизирующими управление и обслуживание станков. Если же говорить в целом о технологическом процессе, то например, автоматизирована одна из десяти операций. Комплексная автоматизация характеризуется переводом обработки деталей, например, со станков общего назначения на автоматические линии, пролеты, цехи, а также автоматические заводы. Для этого направления характерна непрерывность обработки, причем автоматизируются обработка деталей, их контроль, транспортирование, учет, хранение, а также уборка стружки и т. д.

Примером комплексно-автоматизированного производства может служить производство подшипников качения, где изготовление подшипников, начиная от заготовки и заканчивая контролем и упаковкой, выполняется комплексом автоматизированного оборудования.

При комплексной автоматизации кроме ранее перечисленных преимуществ, свойственных автоматизации вообще, обеспечивается возможность непрерывной работы в едином потоке. Отпадает потребность в промежуточных складах, сокращается длительность цикла производства, упрощается планирование производства и учет производимой продукции. Здесь наиболее полно и эффективно сочетаются два принципа - автоматизация и непрерывность производственного процесса. Комплексная автоматизация производства - радикальное и решающее средство повышение производительности труда и качества продукции, снижение ее себестоимости.

Степень автоматизации производственных процессов может быть различной. Различают три стадии автоматизации .

На первой стадии автоматизации рабочий полностью освобождается от физического труда (во время работы машины), включая труд по управлению производственным процессом. Он осуществляет первоначальную наладку машины, наблюдает за машиной и устраняет отклонения от нормальной ее работы. Первая стадия автоматизации обеспечивается разомкнутой системой автоматического управления (не имеющей обратных связей). Примером может служить: токарно-револьверные автоматы, токарные многошпиндельные автоматы, и другие станки и машины с кулачковыми механизмами. Кулачок в этом случае обеспечивает определенную последовательность, направление, величину и скорость перемещения исполнительных органов.

Во второй стадии автоматизации используются замкнутые автоматические системы управления с обратными связями, которые не только обеспечивают выполнение заданной программы, но и автоматически, без вмешательства рабочего регулируют и поддерживают нормальные условия работы машины. Труд рабочего в этом случае сводится в основном к первоначальной наладке машины. Взять, к примеру, токарную обработку длинных валов. При токарной обработке износ резца приводит к увеличению диаметра обработки, и если прибором активного контроля измерять диаметр обработки и по результатам этих измерений автоматически вводить поправку в настройку станка (перемещать резец в нужном направлении), то будем иметь САР, которая поддерживает нормальные условия работы.

Отличительной чертой третьей стадии автоматизации является способность системы управления выполнять логические операции для выбора оптимальных условий работы машины. Помимо устройств с обратными связями такие системы управления имеют устройства для решения логических задач (счетно-решающие машины), позволяющие выполнять работу при оптимальных условиях с учетом переменности внешних и внутренних режимов работы машины. Такие машины являются самоуправляющими. Например, станки с подключенной к ней ЭВМ, оптимизирующие обработку по признаку минимальной шероховатости, или же обеспечивающие максимальный съем металла.


3. Понятия и определения: автомат, полуавтомат, ГПС, автоматическая линия

Автоматом называют рабочую машину (систему машин), при осуществлении технологического процесса на которой, все элементы рабочего цикла (рабочие и холостые ходы) выполняются автоматически. Повторение цикла осуществляется без участия человека. В простейших автоматах человек осуществляет наладку автомата и контролирует его работу. В более совершенных системах автоматически контролируется количество и качество изделия, регулируется и меняется инструмент, подаются исходные заготовки и материал, убирается стружка и др.

Полуавтоматом называют рабочую машину, цикл работы которой в конце выполняемой операции автоматически прерывается. Для возобновления цикла (пуск полуавтомата) необходимо вмешательство человека, который устанавливает и снимает заготовки, пускает станок и контролирует его работу, меняет и регулирует инструмент.

Термины и определения видов гибких производственных систем устанавливает ГОСТ 26228-84.

Гибкая производственная система (ГПС) - совокупность или отдельная единица технологического оборудования и систем обеспечения его функционирования в автоматическом режиме, обладающая свойством автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах их характеристик.

ГПС по организационной структуре подразделяются на следующие уровни:

· гибкий производственный модуль - первый уровень;

· гибкая автоматизированная линия и гибкий автоматизированный участок - второй уровень;

· гибкий автоматизированный цех - третий уровень;

· гибкий автоматизированный завод - четвертый уровень;

По ступеням автоматизации ГПС подразделяются на следующие ступени:

· гибкий производственный комплекс - первая ступень;

· гибкое автоматизированное производство - вторая ступень.

Если не требуется указания уровня организационной структуры производства или ступеней автоматизации, то применяют обобщающий термин «гибкая производственная система».

Гибкий производственный модуль (ГПМ) - это гибкая производственная система, состоящая из единицы технологического оборудования, оснащенная автоматизированным устройством программного управления и средствами автоматизации технологического процесса; автономно функционирующая, осуществляющая многократные циклы и имеющая возможность встраивания в систему более высокого уровня. Частным случаем ГПМ является роботизированный технологический комплекс (РТК) при условии возможности его встраивания в систему более высокого уровня. В общем случае в ГПМ входят накопители, приспособления, спутники (палеты, устройства загрузки и выгрузки, в том числе промышленные роботы (ПР), устройства замены оснастки, удаления отходов, автоматизированного контроля, включая диагностирование, переналадку и т.д.

Гибкая автоматизированная линия (ГАЛ) - ГПС, состоящая из нескольких гибких производственных модулей, объединенных автоматизированной системой управления, в которой технологическое оборудование расположено в принятой последовательности технологических операций.

Гибкий автоматизированный участок (ГАУ) - ГПС, состоящая из нескольких гибких производственных модулей, объединенных автоматизированной системой управления, функционирующая по технологическому маршруту, в котором предусмотрена возможность изменения последовательности использования технологического оборудования.

Гибкий автоматизированный цех (ГАЦ) – ГПС, представляющая собой совокупность гибких автоматизированных линий и (или) гибких автоматизированных участков, предназначенная для изготовления изделия заданной номенклатуры.

Гибкий автоматизированный завод (ГАЗ) – ГПС, представляющая собой совокупность гибких автоматизированных цехов, предназначенная для выпуска готовых изделий в соответствии с планом основного производства.

Приведенные определения не охватывают такие термины как: автоматическая линия, автоматический участок, цех, завод. ЭНИМС предлагает следующие определения:

Линия автоматическая (ЛА) – совокупность технологического оборудования, установленного в последовательности техпроцесса обработки, соединенного автоматическим транспортом и оснащенная автоматическими загрузочно-разгрузочными устройствами и общей системой управления или несколькими взаимосвязанными системами управления.

По ступеням автоматизации различают два вида ГПС :

Гибкий производственный комплекс (ГПС) – это гибкая производственная система, состоящая из нескольких гибких производственных модулей, объединенных автоматизированной системой управления и автоматизированной транспортно-складской системой, автономно функционирующая в течение заданного интервала времени и имеющая возможность встраивания в систему более высокой ступени автоматизации.

Гибкое автоматизированное производство (ГАП) – ГПС, состоящая из одного или нескольких производственных комплексов, объединенных автоматизированной системой управления производством и транспортно-складской автоматизированной системой, и осуществляющая автоматизированный переход на изготовление новых изделий.