Презентация по физике на тему атомная энергетика. Презентация на тему "ядерная энергетика". Ядерная энергетика и окружающая среда

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Атомная энергетика России Атомная энергетика, на долю которой приходится 16% выработки электроэнергии, относительно молодая отрасль российской промышленности. Что такое 6 десятилетий в масштабах истории? Но этот короткий и насыщенный событиями отрезок времени сыграл важную роль в развитии электроэнергетики.

3 слайд

Описание слайда:

История Дату 20 августа 1945 г. можно считать официальным стартом «атомного проекта» Советского Союза. В этот день было подписано постановление Государственного комитета обороны СССР. В 1954 году в Обнинске была запущена самая первая атомная электростанция – первая не только в нашей стране, но и во всем мире. Станция обладала мощностью всего 5 МВт, проработала 50 лет в безаварийном режиме и была закрыта лишь в 2002 году.

4 слайд

Описание слайда:

В рамках федеральной целевой программы «Развитие атомного энергопромышленного комплекса России на 2007-2010 годы и на перспективу до 2015 года» планируется построить три энергоблока на Балаковской, Волгодонской и Калининской атомных электростанций. В целом же 40 энергоблоков должны быть построены до 2030 года. При этом мощности российских АЭС должны с 2012 года ежегодно увеличиваться на 2 ГВт, а с 2014 года – на 3 ГВт, а суммарная мощность атомных станций РФ к 2020 году должна достичь 40 ГВт.

6 слайд

Описание слайда:

7 слайд

Описание слайда:

Белоярская АЭС Расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской). На станции были сооружены три энергоблока: два с реакторами на тепловых нейтронах и один с реактором на быстрых нейтронах. В настоящее время единственным действующим энергоблоком является 3-й энергоблок с реактором БН-600 электрической мощностью 600 МВт, пущенный в эксплуатацию в апреле 1980 - первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

8 слайд

Описание слайда:

9 слайд

Описание слайда:

Смоленская АЭС Смоленская АЭС – является крупнейшим предприятием Северо-Западного региона России. АЭС вырабатывает в восемь раз больше электроэнергии, чем другие электростанции области, вместе взятые. Введена в эксплуатацию в 1976 году

10 слайд

Описание слайда:

Смоленская АЭС Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990. В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

11 слайд

Описание слайда:

12 слайд

Описание слайда:

13 слайд

Описание слайда:

Нововоронежская АЭС Нововоронежская АЭС – расположена на берегу Дона в 5 км от города энергетиков Нововоронежа и в 45 км к югу от Воронежа. Станция на 85 % обеспечивает потребности Воронежской области в электроэнергии, а также дает тепло для половины Нововоронежа. Введена в эксплуатацию в 1957 году.

14 слайд

Описание слайда:

Ленинградская АЭС Ленинградская АЭС – расположена в 80 км к западу от Санкт-Петербурга. На южном берегу Финского залива, снабжает электричеством примерно половину Ленинградской области. Введена в эксплуатацию в 1967 году.

15 слайд

Описание слайда:

Строящиеся АЭС 1 Балтийская АЭС 2 Белоярская АЭС-2 3 Ленинградская АЭС-2 4 Нововоронежская АЭС-2 5 Ростовская АЭС 6 Плавучая АЭС «Академик Ломоносов» 7 Прочие

16 слайд

Описание слайда:

Башкирская АЭС Башки́рская а́томная электроста́нция - недостроенная атомная электростанция, расположенная вблизи города Агидели в Башкортостане у слияния рек Белой и Камы. В 1990 году под давлением общественности после аварии на Чернобыльской АЭС строительство Башкирской АЭС было остановлено. Она повторила участь однотипных ей недостроенных Татарской и Крымской АЭС.

17 слайд

Описание слайда:

История На конец 1991 года в Российской Федерации функционировало 28 энергоблоков, общей номинальной мощностью 20 242 МВт. С 1991 года к сети было подключено 5 новых энергоблоков общей номинальной мощностью 5 000 МВт. На конец 2012 года в стадии строительства находятся ещё 8 энергоблоков, не считая блоков Плавучей атомной электростанции малой мощности. В 2007 году федеральные власти инициировали создание единого государственного холдинга «Атомэнергопром» объединяющего компании Росэнергоатом, ТВЭЛ, Техснабэкспорт и Атомстройэкспорт. 100 % акций ОАО «Атомэнергопром» передавалось одновременно созданной Государственной корпорации по атомной энергии «Росатом».

18 слайд

Описание слайда:

Выработка электроэнергии В 2012 году российские атомные станции выработали 177,3 млрд.кВт ч, что составило 17,1% от общей выработки в Единой энергосистеме России. Объем отпущенной электроэнергии составил 165,727 млрд.кВт·ч. Доля атомной генерации в общем энергобалансе России около 18 %. Высокое значение атомная энергетика имеет в европейской части России и особенно на северо-западе, где выработка на АЭС достигает 42 %. После запуска второго энергоблока Волгодонской АЭС в 2010 году, председатель правительства России В. В. Путин озвучил планы доведения атомной генерации в общем энергобалансе России с 16 % до 20-30 % В разработках проекта Энергетической стратегии России на период до 2030 г. предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.

19 слайд

Описание слайда:

Атомная энергетика в мире В современном быстроразвивающемся мире вопрос энергопотребления стоит очень остро. Невозобновляемость таких ресурсов как нефть, газ, уголь заставляет задуматься об альтернативных источниках электроэнергии, наиболее реальным из которых сегодня является атомная энергетика. Ее доля в мировой выработке электроэнергии составляет 16%. Больше половины этих 16% приходятся на США (103 энергоблока), Францию и Японию (59 и 54 энергоблока соответственно). Всего (по состоянию на конец 2006 года) в мире действуют 439 ядерных энергоблоков, еще 29 находятся в различных стадиях строительства.

20 слайд

Описание слайда:

Атомная энергетика в мире По оценкам ЦНИИАТОМИНФОРМ, до конца 2030 года в мире будет введено в строй около 570 ГВт АЭС (в первых месяцах 2007 года этот показатель составил около 367 ГВт). В настоящий момент лидером по строительству новых блоков является Китай, который строит 6 энергоблоков. За ним идет Индия с 5 новыми блоками. Замыкает же тройку Россия – 3 блока. Намерения строить новые энергоблоки высказывают также и другие страны, в том числе из бывшего СССР и социалистического блока: Украина, Польша, Белоруссия. Оно и понятно, ведь один ядерный энергоблок сэкономит за год такое количество газа, стоимость которого эквивалентна 350 млн долларов США.

21 слайд

Описание слайда:

22 слайд

Описание слайда:

23 слайд

Описание слайда:

24 слайд

Описание слайда:

Уроки Чернобыля Что произошло на Чернобыльской атомной электростанции 20 лет назад? Из-за действий сотрудников атомной электростанции реактор 4-го энергоблока вышел из-под контроля. Его мощность резко возросла. Графитовая кладка раскалилась добела и деформировалась. Стержни системы управления и защиты не смогли войти в реактор и остановить нарастание температуры. Каналы охлаждения разрушились, вода из них хлынула на раскаленный графит. Давление в реакторе возросло и привело к разрушению реактора и здания энергоблока. При соприкосновении с воздухом сотни тонн раскаленного графита загорелись. Стержни, в которых содержалось топливо и радиоактивные отходы, расплавились, и радиоактивные вещества хлынули в атмосферу.

25 слайд

Описание слайда:

Уроки Чернобыля. Потушить сам реактор было совсем не просто. Это нельзя было делать обычными средствами. Из-за высокой радиации и страшных разрушений невозможно было даже приблизиться к реактору. Горела многотонная графитовая кладка. Ядерное топливо продолжало выделять тепло, а система охлаждения была полностью разрушена взрывом. Температура топлива после взрыва достигала 1500 и более градусов. Материалы, из которых был сделан реактор, при такой температуре спекались с бетоном, ядерным топливом, образовывая неизвестные раньше минералы. Надо было остановить ядерную реакцию, понизить температуру обломков и прекратить выброс радиоактивных веществ в окружающую среду. Для этого шахту реактора с вертолетов забрасывали теплоотводящими и фильтрующими материалами. Это начали делать на второй день после взрыва, 27 апреля. Только через 10 дней, 6 мая, удалось существенно снизить, но не прекратить полностью радиоактивные выбросы

26 слайд

Описание слайда:

Уроки Чернобыля За это время огромное количество радиоактивных веществ, выброшенных из реактора, было разнесено ветрами за многие сотни и тысячи километров от Чернобыля. Там, где радиоактивные вещества выпадали на поверхность земли, образовывались зоны радиоактивного заражения. Люди получали большие дозы радиации, болели и умирали. Первыми умерли от острой лучевой болезни герои-пожарные. Страдали и умирали вертолетчики. Жители окрестных сел и даже удаленных районов, куда ветер принес радиацию, вынуждены были покинуть родные места и стать беженцами. Огромные территории стали непригодны для проживания и для ведения сельского хозяйства. Лес, река, поле все стало радиоактивным, все таило невидимую опасность

Слайд 2

Атомная энергетика

§66. Деление ядер урана. §67. Цепная реакция. §68. Ядерный реактор. §69. Атомная энергетика. §70. Биологическое действие радиации. §71. Получение и применение радиоактивных изотопов. §72. Термоядерная реакция. §73. Элементарные частицы. Античастицы.

Слайд 3

§66. Деление ядер урана

Кто и когда открыл деление ядер урана? Каков механизм деления ядра? Какие силы действуют в ядре? Что происходит при делении ядра? Что происходит с энергией при делении ядра урана? Как изменяется температура окружающей среды при делении ядер урана? Как велика выделенная энергия?

Слайд 4

Деление тяжелых ядер.

В отличие от радиоактивного распада ядер, сопровождающегося испусканием α- или β-частиц, реакции деления – это процесс, при котором нестабильное ядро делится на два крупных фрагмента сравнимых масс. В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деление ядер урана. Продолжая исследования, начатые Ферми, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической системы – радиоактивные изотопы бария (Z = 56), криптона (Z = 36) и др. Уран встречается в природе в виде двух изотопов: урана-238 и урана-235 (99,3 %) и (0,7 %). При бомбардировке нейтронами ядра обоих изотопов могут расщепляться на два осколка. При этом реакция деления урана-235 наиболее интенсивно идет на медленных (тепловых) нейтронах, в то время как ядра урана-238 вступают в реакцию деления только с быстрыми нейтронами с энергией порядка 1 МэВ.

Слайд 5

Цепная реакция

Основной интерес для ядерной энергетики представляет реакция деления ядра урана-235. В настоящее время известны около 100 различных изотопов с массовыми числами примерно от 90 до 145, возникающих при делении этого ядра. Две типичные реакции деления этого ядра имеют вид: Обратите внимание, что в результате деления ядра, инициированного нейтроном, возникают новые нейтроны, способные вызвать реакции деления других ядер. Продуктами деления ядер урана-235 могут быть и другие изотопы бария, ксенона, стронция, рубидия и т. д.

Слайд 6

При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией

Схема развития цепной реакции деления ядер урана представлена на рисунке

Слайд 7

Коэффициент размножения

Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Нейтроны, освободившиеся при делении ядер урана-235, способны вызвать деление лишь ядер этого же урана, на долю которого в природном уране приходится всего лишь 0,7 %.

Слайд 8

Критическая масса

Наименьшая масса урана, при которой возможно протекание цепной реакции, называется критической массой. Способы уменьшения потери нейтронов: Использование отражающей оболочки (из бериллия), Уменьшение количества примесей, Применение замедлителя нейтронов (графит, тяжелая вода), Для урана-235 - M кр = 50 кг(r=9 см).

Слайд 9

Схема ядерного реактора

  • Слайд 10

    В активной зоне ядерного реактора идет управляемая ядерная реакцияс выделением большого количество энергии.

    Первый ядерный реактор был построен в 1942 году в США под руководством Э. Ферми.В нашей стране первый реактор был построен в 1946 году под руководством И. В. Курчатова

    Слайд 11

    Домашнее задание

    §66. Деление ядер урана. §67. Цепная реакция. §68. Ядерный реактор. Ответить на вопросы. Нарисовать схему реактора. Какие вещества и как применяются в ядерном реакторе? (письменно)

    Слайд 12

    Термоядерные реакции.

    Реакции слияния легких ядер носят название термоядерных реакций, так как они могут протекать только при очень высоких температурах.

    Слайд 13

    Второй путь освобождения ядерной энергии связан с реакциями синтеза. При слиянии легких ядер и образовании нового ядра должно выделяться большое количество энергии. Особенно большое практическое значение имеет то, что при термоядерной реакции на каждый нуклон выделяется намного больше энергии, чем при ядерной реакции, например, при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ,а при делении ядра урана на один нуклон приходится »0,9 МэВ.

    Слайд 14

    Условия протекания термоядерной реакции

    Чтобы два ядра вступили в реакцию синтеза, они должны сблизится на расстояние действия ядерных сил порядка 2·10–15 м, преодолев электрическое отталкивание их положительных зарядов. Для этого средняя кинетическая энергия теплового движения молекул должна превосходить потенциальную энергию кулоновского взаимодействия. Расчет необходимой для этого температуры T приводит к величине порядка 108–109 К. Это чрезвычайно высокая температура. При такой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой.

    Слайд 15

    Управляемая термоядерная реакция

    Энергетически выгодная реакция. Однако она может идти лишь при очень высоких температурах (порядка несколько сотен млн. градусов). При большой плотности вещества такая температура может быть достигнута путем создания в плазме мощных электронных разрядов. При этом возникает проблема - трудно удержать плазму. Самоподдерживающиеся термоядерные реакции происходят в звездах

    Слайд 16

    Энергетический кризис

    стал реальной угрозой для человечества. В связи с этим ученые предложили добывать изотоп тяжелого водорода - дейтерий - из морской воды и подвергать реакции ядерного расплава при температурах около 100 миллионов градусов Цельсия. При ядерном расплаве дейтерий, полученный из одного килограмма морской воды будет способен произвести столько же энергии, сколько выделяется при сжигании 300 литров бензина ___ ТОКАМАК (тороидальная магнитная камера с током)

    Слайд 17

    Наиболее мощный современный ТОКАМАК, служащий только лишь для исследовательских целей, находится в городе Абингдон недалеко от Оксфорда. Высотой в 10 метров, он вырабатывает плазму и сохраняет ей жизнь пока всего лишь около 1 секунды.

    Слайд 18

    ТОКАМАК (ТОроидальнаяКАмера с МАгнитными Катушками)

    это электрофизическое устройство, основное назначение которого – формирование плазмы. Плазма удерживается не стенками камеры, которые не способны выдержать её температуру, а специально создаваемым магнитным полем, что возможно при температурах около 100 млн. градусов, и сохранение её достаточно долгое время в заданном объеме. Возможность получения плазмы при сверхвысоких температурах позволяет осуществить термоядерную реакцию синтеза ядер гелия из исходного сырья, изотопов водорода (дейтерия итрития

    Слайд 2

    ЦЕЛЬ:

    Оценить положительные и отрицательные стороны использования ядерной энергии в современном обществе.Сформировать идеи, связанные с угрозой миру и человечеству при использовании ядерной энергии.

    Слайд 3

    Применение атомной энергетики

    Энергия - это основа основ. Все блага цивилизации, все материальные сферы деятельности человека - от стирки белья до исследования Луны и Марса - требуют расхода энергии. И чем дальше, тем больше. На сегодняшний день энергия атома широко используется во многих отраслях экономики. Строятся мощные подводные лодки и надводные корабли с ядерными энергетическими установками. С помощью мирного атома осуществляется поиск полезных ископаемых. Массовое применение в биологии, сельском хозяйстве, медицине, в освоении космоса нашли радиоактивные изотопы.

    Слайд 4

    Энергетика: «ЗА»

    а) Атомная энергетика является на сегодняшний день лучшим видом получения энергии. Экономичность, большая мощность, экологичность при правильном использовании. б) Атомные станции по сравнению с традиционными тепловыми электростанциями обладают преимуществом в расходах на топливо, что особо ярко проявляется в тех регионах, где имеются трудности в обеспечении топливно-энергетическими ресурсами, а также устойчивой тенденцией роста затрат на добычу органического топлива. в) Атомным станциям не свойственны также загрязнения природной среды золой, дымовыми газами с CO2, NOх, SOх, сбросными водами, содержащими нефтепродукты.

    Слайд 5

    АЭС, ТЭЦ, ГЭС-современная цивилизация

    Современная цивилизация немыслима без электрической энергии. Выработка и использование электричества увеличивается с каждым годом, но перед человечеством уже маячит призрак грядущего энергетического голода из-за истощения месторождений горючих ископаемых и все больших экологических потерь при получении электроэнергии. Энергия, выделяющаяся в ядерных реакциях, в миллионы раз выше, чем та, которую дают обычные химические реакции (например, реакция горения), так что теплотворная способность ядерного топлива оказывается неизмеримо большей, чем обычного топлива. Использовать ядерное топливо для выработки электроэнергии -- чрезвычайно заманчивая идея.Преимущества атомных электростанций (АЭС) перед тепловыми (ТЭЦ) и гидроэлектростанциями (ГЭС) очевидны: нет отходов, газовых выбросов, нет необходимости вести огромные объемы строительства, возводить плотины и хоронить плодородные земли на дне водохранилищ. Пожалуй, более экологичны, чем АЭС, только электростанции, использующие энергию солнечного излучения или ветра. Но и ветряки, и гелиостанции пока маломощны и не могут обеспечить потребности людей в дешевой электроэнергии - а эта потребность все быстрее растет. И все же целесообразность строительства и эксплуатации АЭС часто ставят под сомнение из-за вредного воздействия радиоактивных веществ на окружающую среду и человека.

    Слайд 6

    Перспективы атомной энергетики

    После неплохого старта наша страна отстала от передовых стран мира в области развития атомной энергетики по всем параметрам. Конечно, от ядерной энергетики можно вообще отказаться. Тем самым будет полностью устранена опасность облучения людей и угроза ядерных аварий. Но тогда для удовлетворения потребностей в энергии придется наращивать строительство ТЭЦ и ГЭС. А это неизбежно приведет к большому загрязнению атмосферы вредными веществами, к накоплению в атмосфере избыточного количества углекислого газа, изменению климата Земли и нарушению теплового баланса в масштабах всей планеты. Между тем призрак энергетического голода начинает реально угрожать человечеству.Радиация - грозная и опасная сила, но при должном отношении с ней вполне можно работать. Характерно, что меньше всего боятся радиации те, кто постоянно имеет с ней дело и хорошо знает все связанные с ней опасности. В этом смысле интересно сравнить статистику и интуитивную оценку степени опасности различных факторов повседневной жизни. Так, установлено, что наибольшее число человеческих жизней уносят курение, алкоголь и автомобили. Между тем, по оценке людей из групп населения, различных по возрасту и образованию, наибольшую опасность жизни несут атомная энергетика и огнестрельное оружие (урон, приносимый человечеству курением и алкоголем, явно недооценивается).Специалисты, которые могут наиболее квалифицированно оценить достоинства и возможности использования ядерной энергетики, считают, что человечеству уже не обойтись без энергии атома. Ядерная энергетика - один из наиболее перспективных путей утоления энергетического голода человечества в условиях энергетических проблем, связанных с использованием ископаемого горючего топлива.

    Слайд 7

    Преимущества атомной энергетики

    Есть очень много преимуществ атомных электростанций. Они полностью не зависят от мест добычи урана. Ядерное топливо компактно, срок его использования достаточно продолжителен. АЭС ориентированы на потребителя и становятся востребованы в тех местах, где существует острая нехватка органического топлива, а потребности в электроэнергии очень велики. Еще одним их достоинством является низкая стоимость полученной энергии, сравнительно небольшие затраты на строительство. В сравнении с тепловыми электростанциями атомные электростанции не выделяют в атмосферу такого большого количества вредных веществ, и их работа не приводит к усилению парникового эффекта. На данный момент перед учеными стоит задача повысить эффективность использования урана. Ее решают с помощью реакторов-размножителей на быстрых нейтронах (РБН). Совместно с реакторами на тепловых нейтронах они повышают энерговыработку с тонны природного урана в 20-30 раз. При полном использовании природного урана становится рентабельной его добыча из очень бедных руд и даже извлечение его из морской воды. Использование АЭС с РБН ведет к некоторым техническим трудностям, которые в данный момент пытаются решить. В качестве топлива Россия может использовать высокообогащенный уран, освободившийся в результате сокращения численности ядерных боеголовок.

    Слайд 8

    Медицина

    Методы диагностики и терапии показали свою высокую эффективность. При облучении раковых клеток γ – лучами они прекращают своё деление. И если раковое заболевание находится на начальной стадии, то лечение является успешным Малые количества радиоактивных изотопов используются с целью диагностики. Например, при рентгеноскопии желудка используется радиоактивный барий Успешно применяются изотопы при исследовании йодного обмена щитовидной железы

    Слайд 9

    Самые-самые

    Касивадзаки-Карива-крупнейшая АЭС в мире по установленной мощности (на 2008 год) находится в Японском городе Касивадзаки префектуры Ниигата. В эксплуатации находятся пять кипящих ядерных реакторов (BWR) и два улучшенных кипящих ядерных реакторов (ABWR), суммарная мощность которых составляет 8.212 ГигаВатт.

    Слайд 10

    Запорожская АЭС

    Слайд 11

    Альтернативное заменение АЭС

    Энергия солнца. Общее количество солнечной энергии, достигающее поверхности Земли в 6,7 раз больше мирового потенциала ресурсов органического топлива. Использование только 0,5 % этого запаса могло бы полностью покрыть мировую потребность в энергии на тысячелетия. На Сев. Технический потенциал солнечной энергии в России (2,3 млрд. т усл. топлива в год) приблизительно в 2 раза выше сегодняшнего потребления топлива.

    Слайд 12

    Тепло земли. Геотермальная энергия - в дословном переводе значит: земли тепловая энергия. Объём Земли составляет примерно 1085 млрд.куб.км и весь он, за исключением тонкого слоя земной коры, имеет очень высокую температуру. Если учесть ещё и теплоемкость пород Земли, то станет ясно, что геотермальная теплота представляет собой, несомненно, самый крупный источник энергии, которым в настоящее время располагает человек. Причём это энергия в чистом виде, так как она уже существует как теплота, и поэтому для её получения не требуется сжигать топливо или создавать реакторы.

    Слайд 13

    Преимущества водо-графитовых реакторов

    Преимущества канального графитового реактора состоят в возможности использования графита одновременно в качестве замедлителя и конструкционного материала активной зоны, что допускает применение технологических каналов в сменяемом и несменяемом вариантах, использование твэлов в стержневом или трубчатом исполнении с односторонним или всесторонним охлаждением их теплоносителем. Конструктивная схема реактора и активной зоны позволяет организовать перегрузку топлива на работающем реакторе, применить зональный или секционный принцип построения активной зоны, допускающий профилирование энерговыделения и теплосъема, широкое использование типовых конструкций, реализацию ядерного перегрева пара, т. е. перегрева пара непосредственно в активной зоне.

    Слайд 14

    Ядерная энергетика и окружающая среда

    На сегодняшний день ядерная энергетика и её влияние на окружающую среду являются самыми актуальными вопросами на международных съездах и собраниях. Особенно остро этот вопрос стал звучать после аварии на Чернобыльской атомной электростанции (ЧАЭС). На подобных съездах решаются вопросы, связанные с монтажными работами на АЭС. А также вопросы, затрагивающие состояние рабочего оборудования на данных станциях. Как известно работа атомных электростанций основывается на расщеплении урана на атомы. Поэтому добыча этого топлива для станций также является не маловажным вопросом на сегодняшний день. Многие вопросы, касающиеся атомных электростанций, так или иначе связаны с окружающей средой. Хотя работа атомных электростанций приносит большое количество полезной энергии, но, к сожалению, все «плюсы» в природе компенсируются своими «минусами». Атомная энергетика не исключение: в работе атомных электростанций сталкиваются с проблемами утилизации, хранения, переработки и транспортировки отходов.

    Слайд 15

    Насколько опасна ядерная энергетика?

    Атомная энергетика - активно развивающаяся отрасль. Очевидно, что ей предназначено большое будущее, так как запасы нефти, газа, угля постепенно иссякают, а уран - достаточно распространенный элемент на Земле. Но следует помнить, что атомная энергетика связана с повышенной опасностью для людей, которая, в частности, проявляется в крайне неблагоприятных последствиях аварий с разрушением атомных реакторов.

    Слайд 16

    Энергетика: «против»

    «против» атомных станций: а) Ужасные последствия аварий на АЭС. б) Локальное механическое воздействие на рельеф - при строительстве. в) Повреждение особей в технологических системах - при эксплуатации. г) Сток поверхностных и грунтовых вод, содержащих химические и радиоактивные компоненты. д) Изменение характера землепользования и обменных процессов в непосредственной близости от АЭС. е) Изменение микроклиматических характеристик прилежащих районов.

    Слайд 17

    Не только радиация

    Эксплуатация АЭС сопровождается не только опасностью радиационного загрязнения, но и другими видами воздействия на окружающую среду. Основным является тепловое воздействие. Оно в полтора-два раза выше, чем от тепловых электростанций. При работе АЭС возникает необходимость охлаждения отработанного водяного пара. Самым простым способом является охлаждение водой из реки, озера, моря или специально сооруженных бассейнов. Вода, нагретая на 5-15 °С, вновь возвращается в тот же источник. Но этот способ несет с собой опасность ухудшения экологической обстановки в водной среде в местах расположения АЭС.Большее применение находит система водоснабжения с использованием градирен, в которых охлаждение воды происходит за счет ее частичного испарения и охлаждения. Небольшие потери пополняются постоянной подпиткой свежей водой. При такой системе охлаждения в атмосферу выбрасывается огромного количество водяного пара и капельной влаги. Это может привести к увеличению количества выпадающих осадков, частоты образования туманов, облачности.В последние годы стали применять систему воздушного охлаждения водяного пара. В этом случае нет потерь воды, и она наиболее безвредна для окружающей среды. Однако такая система не работает при высокой средней температуре окружающего воздуха. Кроме того, себестоимость электроэнергии существенно возрастает.

    Слайд 18

    Невидимый враг

    Ответственность за естественную земную радиацию в основном несут три радиоактивных элемента -- уран, торий и актиний. Эти химические элементы нестабильны; распадаясь, они выделяют энергию или становятся источниками ионизирующего излучения. Как правило, при распаде образуется невидимый, не имеющий вкуса и запаха тяжелый газ радон. Он существует в виде двух изотопов: радон--222, член радиоактивного ряда, образуемого продуктами распада урана-238, и радон-220 (называемый также торон), член радиоактивного ряда тория-232. Радон постоянно образуется в глубинах Земли, накапливается в горных породах, а затем постепенно по трещинам перемещается к поверхности Земли.Облучение от радона человек очень часто получает, находясь у себя дома или на работе и не подозревая об опасности, -- в закрытом, непроветриваемом помещении, где повышена его концентрация этого газа -- источника радиации.Радон проникает в дом из грунта -- сквозь трещины в фундаменте и через пол -- и накапливается в основном на нижних этажах жилых и производственных построек. Но известны и такие случаи, когда жилые дома и производственные корпуса возводят непосредственно на старых отвалах горнодобывающих предприятий, где радиоактивные элементы присутствуют в значительных количествах. Если в строительстве производстве применяют такие материалы как гранит, пемза, глинозем, фосфогипс, красный кирпич, кальциево-силикатный шлак, источником радоновой радиации становится материал стен.Природный газ, используемый в газовых плитах (особенно сжиженный пропан в баллонах) -- тоже потенциальный источник радона. А если воду для бытовых нужд выкачивают из глубоко залегающих водяных пластов, насыщенных радоном, то высокая концентрация радона в воздухе даже при стирке белья! Кстати, было установлено, что средняя концентрация радона в ванной комнате, как правило, в 40 раз выше, чем в жилых комнатах и в несколько раз выше, чем на кухне.

    Слайд 19

    Радиоактивный «мусор»

    Даже если атомная электростанция работает идеально и без малейших сбоев, ее эксплуатация неизбежно ведет к накоплению радиоактивных веществ. Поэтому людям приходится решать очень серьезную проблему, имя которой -- безопасное хранение отходов. Отходы любой отрасли промышленности при огромных масштабах производства энергии, различных изделий и материалов создают огромной проблемой. Загрязнение окружающей среды и атмосферы во многих районах нашей планеты внушает тревогу и опасения. Речь идет о возможности сохранения животного и растительного мира уже не в первозданном виде, а хотя бы в пределах минимальных экологических норм.Радиоактивные отходы образуются почти на всех стадиях ядерного цикла. Они накапливаются в виде жидких, твердых и газообразных веществ с разным уровнем активности и концентрации. Большинство отходов являются низкоактивными: это вода, используемая для очистки газов и поверхностей реактора, перчатки и обувь, загрязненные инструменты и перегоревшие лампочки из радиоактивных помещений, отработавшее оборудование, пыль, газовые фильтры и многое другое.

    Слайд 20

    Борьба с радиоактивным мусором

    Газы и загрязненную воду пропускают через специальные фильтры, пока они не достигнут чистоты атмосферного воздуха и питьевой воды. Ставшие радиоактивными фильтры перерабатывают вместе с твердыми отходами. Их смешивают с цементом и превращают в блоки или вместе с горячим битумом заливают в стальные емкости.Труднее всего подготовить к долговременному хранению высокоактивные отходы. Лучше всего такой "мусор" превращать в стекло и керамику. Для этого отходы прокаливают и сплавляют с веществами, образующими стеклокерамическую массу. Рассчитано, что для растворения 1 мм поверхностного слоя такой массы в воде потребуется не менее 100 лет.В отличие от многих химических отходов, опасность радиоактивных отходов со временем снижается. Бoльшая часть радиоактивных изотопов имеет период полураспада около 30 лет, поэтому уже через 300 лет они почти полностью исчезнут. Так что для окончательного удаления радиоактивных отходов необходимо строить такие долговременные хранилища, которые позволили бы надежно изолировать отходы от их проникновения в окружающую среду до полного распада радионуклидов. Такие хранилища называют могильниками.

    Слайд 21

    Взрыв на Чернобыльской АЭС 26 апреля 1986 года.

    25 апреля 4-й энергоблок был остановлен для планового ремонта, на время которого было запланировано несколько испытаний оборудования. В соответствии с программой мощность реактора была понижена, и тут начались проблемы, связанные с явлением «ксенонового отравления» (накоплением изотопа ксенона в реакторе, работающем на пониженной мощности, еще больше тормозящим работу реактора). Для компенсации отравления были подняты поглощающие стержни, начался рост мощности. Что произошло дальше, в точности не ясно. В докладе Международной консультативной группы по ядерной безопасности отмечено: «Достоверно не известно, с чего начался скачок мощности, приведший к разрушению реактора Чернобыльской АЭС». Этот внезапный скачок попытались заглушить, опустив поглощающие стержни, однако из-за их неудачной конструкции замедлить реакцию не удалось, и произошел взрыв.

    Слайд 22

    Чернобыль

    Анализ Чернобыльской аварии убедительно подтверждает, что радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизни деятельности людей на территориях, подвергающихся радиоактивному загрязнению.

    Слайд 23

    Японский Чернобыль

    Недавно произошел взрыв на АЭС Фукусима 1 (Япония) из-за сильного землетрясения. Авария на атомной электростанции «Фукусима» стала первой катастрофой на атомном объекте, обусловленной воздействием, хотя и косвенным, природной стихии. До сих пор крупнейшие аварии имели «внутренний» характер: их причиной являлось сочетание неудачных элементов конструкции и человеческого фактора.

    Слайд 24

    Взрыв в Японии

    На станции "Фукусима-1", расположенной в одноименной префектуре, 14 марта взорвался водород, скопившийся под крышей третьего реактора. По данным компании Tokyo Electric Power Co (TEPCO) - оператора АЭС. Япония проинформировала Международное агентство по атомной энергии (МАГАТЭ) о том, что в результате взрыва на АЭС "Фукусима-1" радиационный фон в районе аварии превысил допустимую норму.

    Слайд 25

    Последствия радиации:

    Мутации Раковые заболевания (щитовидной железы, лейкоз, молочной железы, легкого, желудка, кишечника) Наследственные нарушения Стерильность яичников у женщин. Слабоумие

    Слайд 26

    Коэффициент чувствительности ткани при эквивалентной дозе облучения

  • Слайд 27

    Результаты радиации

  • Слайд 28

    Заключение

    Факторы «За» атомные станции: 1. Атомная энергетика является на сегодняшний день лучшим видом получения энергии. Экономичность, большая мощность, экологичность при правильном использовании. 2. Атомные станции по сравнению с традиционными тепловыми электростанциями обладают преимуществом в расходах на топливо, что особо ярко проявляется в тех регионах, где имеются трудности в обеспечении топливно-энергетическими ресурсами, а также устойчивой тенденцией роста затрат на добычу органического топлива. 3. Атомным станциям не свойственны также загрязнения природной среды золой, дымовыми газами с CO2, NOх, SOх, сбросными водами, содержащими нефтепродукты. Факторы «Против» атомных станций: 1. Ужасные последствия аварий на АЭС. 2. Локальное механическое воздействие на рельеф - при строительстве. 3. Повреждение особей в технологических системах - при эксплуатации. 4. Сток поверхностных и грунтовых вод, содержащих химические и радиоактивные компоненты. 5. Изменение характера землепользования и обменных процессов в непосредственной близости от АЭС. 6. Изменение микроклиматических характеристик прилежащих районов.

    Посмотреть все слайды



    Атомный век имеет длительную предысторию. Начало положила опубликованная в декабре 1895 работа В. Рентгена « О новом роде лучей ». Он назвал их Х - лучами, впоследствии они получили название рентгеновских. В 1896 г. А. Беккерель открыл, что урановая руда испускает невидимые лучи, обладающие большой проникающей способностью. Позднее это явление было названо радиоактивностью. В 1919 году группа учёных под руководством Э. Резерфорда, бомбардируя альфа - частицами азот, получила изотоп кислорода – так была осуществлена первая в мире искусственная ядерная реакция. В 1942 под трибунами футбольного стадиона в Чикагском университете (США) был запущен первый в истории ядерный реактор. Атомная энергетика – очень важная часть жизни современного человека, потому что на данный момент это одна из самых прогрессивных и развивающихся отраслей науки. Развитие атомной энергетики открывает перед человечеством новые возможности. Но как и у всего нового, у нее есть и свои противники, которые утверждают, что атомная энергетика имеет скорее больше минусов, чем плюсов. Для начала нужно выяснить – а как вообще возникла атомная энергетика?


    Европа была накануне Второй мировой войны, и потенциальное обладание таким мощным оружием подталкивало на быстрейшее его создание. Над созданием атомного оружия трудились физики Германии, Англии, США, Японии. Понимая, что без достаточного количества урановой руды невозможно вести работы, США в сентябре 1940 года закупили большое количество требуемой руды, что и позволило им вести работы над созданием ядерного оружия полным ходом.




    Правительством Соединённых Штатов было принято решение - в кратчайшие сроки создать атомную бомбу. Этот проект вошел историю как "Manhattan Project". Возглавил его Лесли Гровс. На территории Соединенных Штатов в 1942 году был создан американский ядерный центр. Под его началом были собраны лучшие умы того времени не только США и Англии, но практически всей Западной Европы. 16 июля 1945 года, в 5:29:45 по местному времени, яркая вспышка озарила небо над плато в горах Джемеза на севере от Нью - Мехико. Характерное облако радиоактивной пыли, напоминающее гриб, поднялось на 30 тысяч футов. Все что осталось на месте взрыва - фрагменты зеленого радиоактивного стекла, в которое превратился песок.


    В ХХ веке общество стремительно развивалось, люди стали потреблять все большее количество энергетических ресурсов. Требовался новый источник энергии. Большие надежды связывали с использованием атомных электростанций (АЭС) для обеспечения основной доли мировых потребностей в энергии. Первая в мире АЭС опытно - промышленного назначения мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преимущественно в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1- й Международной научно - технической конференции по мирному использованию атомной энергии (август 1955, Женева). За рубежом первая АЭС промышленного назначения мощностью 46 Мвт была введена в эксплуатацию в 1956 в Колдер - Холле (Англия). Через год вступила в строй АЭС мощностью 60 Мвт в Шиппингпорте (США). На начало х гг. 435 действующих АЭС вырабатывали около 7% производимой в мире энергии.



    Люди, которые не понимают устройства и работы АЭС считают, что от этих самых АЭС исходит опасность и бояться строительства новых предприятий, бояться идти работать на данные предприятия и вообще относятся негативно к этому явлению. Участники протестов утверждают, что выступают не против атомных технологий, а против атомной энергетики как таковой, поскольку считают ее опасной. Как аргумент они приводят события, не так давно произошедшие на Чернобыльской АЭС и на станции " Фукусима ". Авария на японской атомной электростанции " Фукусима " изменила отношение людей к атомной энергетике во всем мире. Эту тенденцию наглядно демонстрирует опрос, проведенный международной компанией Ipsos в 24 странах, где сосредоточено около 60 процентов населения планеты. В 21 из 24 государств большинство респондентов высказалось за закрытие АЭС. Только в Индии, США и Польше, по данным Ipsos, большая часть граждан по - прежнему выступают за дальнейшее использование атомной энергетики.


    У р азвития а томной э нергетики с уществует 2 пути По прогнозам экспертов, доля атомной энергетики будет расти и составлять существенную часть в общемировом энергобалансе. Люди добьются безопасного будущего в сфере ядерной энергетики Остановка деятельности работающих АЭС, поиск нового альтернативного способа получения электроэнергии


    За: Ежегодно атомные станции в Европе позволяют избежать эмиссии 700 миллионов тонн СО 2. Действующие АЭС России ежегодно предотвращают выброс в атмосферу 210 млн тонн углекислого газа; низкие и устойчивые (по отношению к стоимости топлива) цены на электроэнергию; В противоречии со сложившимся общественным мнением, экспертами всего мира ядерные электростанции признаны наиболее безопасными и экологически чистыми по сравнению с прочими традиционными способами производства энергии. Кроме того, уже разработано и устанавливается новое поколение ядерных реакторов, приоритетным для которого является полная безопасность эксплуатации. Против: Основные экологические проблемы атомной энергетики заключаются в обращении с ОЯТ (отработанное ядерное топливо). Так большая часть российского ОЯТ в настоящее время хранится во временных хранилищах при АЭС; Проблематика устранения АЭС: ядерный реактор нельзя просто остановить, закрыть и уйти. Многие годы придется выводить его из эксплуатации, лишь частично сокращая обслуживающий персонал. Как бы ни хотелось, сторонникам или противникам развития атомной энергетики, а точку в обсуждении будущего атомной отрасли мира в целом ставить рано. Бесспорно одно: недопустимо полагаться только на специалистов-атомщиков, влюбленных в свое дело, и чиновников, курирующих атомную отрасль. Слишком тяжелы для всего общества последствия принимаемых ими решений, чтобы возлагать ответственность только на них. Население и особенно организации гражданского общества должны играть в обсуждении и принятии значимых решений важную, если не ключевую роль.


    Авария на АЭС Фукусима -1 крупная радиационная авария произошедшая 11 марта 2011 года в результате сильнейшего землетрясения в Японии и последовавшего за ним цунами. Землетрясение и удар цунами вывели из строя внешние средства электроснабжения и резервные дизельные электростанции, что явилось причиной неработоспособности всех систем нормального и аварийного охлаждения и привело к расплавлению активной зоны реакторов на энергоблоках 1, 2 и 3 в первые дни развития аварии.


    В результате землетрясения сильно пострадали префектуры Мияги, Иватэ и Фукусима. В результате подземных толчков на 55 ядерных реакторах штатно сработали системы безопасности. В результате землетрясения 11 энергоблоков из существующих в Японии были автоматически остановлены. После землетрясения силой в 8,4 балла на станции Огинава произошла остановка всех трех реакторов в штатном режиме, однако в последствие (через два дня, 13 марта) в машинном зале возник пожар первого энергоблока, который был быстро локализован и потушен. В результате пожара разрушена одна из турбин, радиоактивных выбросов в атмосферу не последовало. Именно вода принесла основные разрушения на станцию Фукусима -1: водою были заглушены резервные дизель - генераторы, которые обеспечивали электричеством энергоблоки на АЭС после землетрясения. Отключение электричества, необходимого для работы систем управления и защиты реактора и привели в дальнейшем к трагическим событиям.


    То, что присутствие радиоактивных йода и цезия, выброшенных из активной зоны реактора АЭС Фукусима, вскоре после аварии было зафиксировано на территории России (в том числе в Москве) правда. Присутствие этих изотопов регистрируется приборами, впрочем, не только в Приморье или Москве, но и по всему земному шару, как и прогнозировали специалисты с самого начала развития аварии в Японии. Однако количества этих изотопов настолько незначительны, что оказать какое - либо влияние на здоровье людей они не могут. Поэтому москвичам и гостям столицы нет никакой необходимости запасаться йодсодержащими препаратами, не говоря уже о перспективах какой бы то ни было эвакуации. Начальник Гидрометцентра Приморья Борис Кубай подтвердил, что концентрация йода -131 ниже допустимых значений в 100 раз, так что угроза для здоровья людей отсутствует.


    По имеющимся данным, объем радиоактивных выбросов при аварии на АЭС « Фукусима -I» в 7 раз ниже, чем наблюдался во время чернобыльской аварии. Намного выше при аварии на Чернобыльской АЭС и ликвидации ее последствий было и число жертв, достигшее по оценке ВОЗ 4000 человек. Однако не следует забывать, что авария на АЭС « Фукусима -I» имеет характер, принципиально отличающийся от характера чернобыльской катастрофы. В Чернобыле основную опасность для здоровья людей представлял выброс радиоактивных элементов непосредственно в момент аварии. В дальнейшем радиоактивное заражение прилегающих к АЭС территорий лишь снижалось в результате естественного снижения радиоактивности нестабильных элементов и их постепенного размывания в окружающей среде. АЭС « Фукусима -I» расположена на побережье океана, благодаря чему значительная часть радиационного заражения попадает в океанскую воду. С одной стороны этим обусловлено значительно менее интенсивное заражение прилегающих территорий (к тому же, в отличие от Чернобыля, на Фукусиме не было взрыва реактора как такового, а значит не было массированного разлета радиоактивных частиц по воздуху), но с другой утечка в океан зараженной воды с поврежденных реакторов Фукусимы продолжается, и устранить ее будет значительно труднее.


    Среди тех, кто настаивает на необходимости продолжать поиск безопасных и экономичных путей развития атомной энергетики, можно выделить два основных направления. Сторонники первого полагают, что все усилия должны быть сосредоточены на устранении недоверия общества к безопасности ядерных технологий. Для этого необходимо разрабатывать новые реакторы, более безопасные, чем существующие легководные. Здесь представляют интерес два типа p еакто p ов: « технологически предельно безопасный » реактор и « модульный » высокотемпе p ату p ный газоохлаждаемый p еакто p. Прототип модульного газоохлаждаемого реактора разрабатывался в Ге p мании, а также в США и Японии. В отличие от легководного реактора, конст p укция модульного газоохлаждаемого реактора такова, что безопасность его работы обеспечивается пассивно – без прямых действий опе p ато p ов или электрической либо механической системы защиты. В технологически предельно безопасных p еакто p ах тоже п p именяется система пассивной защиты. Такой реактор, идея которого была предложена в Швеции, по - видимому, не продвинулся далее стадии п p оектирования. Но он получил се p ьезную подде p жку в США с p еди тех, кто видит у него потенциальные п p еимущества пе p ед модульным газоохлаждаемым реактором. Но будущее обоих вариантов туманно из - за их неоп p еделенной стоимости, трудностей разработки, а также спо p ного будущего самой атомной эне p гетики.


    1. Т орий Торий м ожет п рименяться в к ачестве т оплива в я дерном ц икле к ак альтернатива у рану, и т ехнологии д ля э того п роцесса с уществуют у же с х г одов. М ногие у ченые и д ругие д еятели п ризывают к и спользованию этого э лемента, у тверждая, ч то о н и меет м ного п реимуществ п еред т екущим урановым т опливным ц иклом, п рименяемым н а з аводах п о в сему м иру. 2. С олнечная э нергия Солнечная э нергия – э то б огатый, н еистощимый и, п ожалуй, н аиболее известный и з а льтернативных и сточников э нергии. Н аиболее п опулярный метод п рименения э той э нергии – использование с олнечных б атарей д ля преобразования с олнечной э нергии в э лектрическую, к оторая з атем поставляется к онечному п отребителю. 3. В одород Еще о дин а льтернативный и сточник э нергии – в одород, к оторый м ожет использоваться с овместно с т опливным э лементом д ля н ужд т ранспорта. Водород м алотоксичен п ри с горании, м ожет п роизводиться в нутри с траны и быть в т ри р аза э ффективнее, ч ем т ипичный б ензиновый д вигатель. Водород м ожет б ыть п олучен в р езультате р азличных п роцессов, в т ом числе и з и скопаемого т оплива, б иомассы и э лектролизованной в оды. Д ля получения н аибольшей п ользы о т в одорода к ак и сточника т оплива, л учшим методом м ожно н азвать и спользование д ля е го п роизводства возобновляемых и сточников э нергии.