Применение глицерина презентация. Презентация на тему "глицерин". Глицерин в военном деле

«Строение сложных эфиров» - Определение класса сложных эфиров. Жиры не растворяются в воде. Химически активные вещества. Растворители. Гидрогенизация. Источник энергии. Производные карбоновых кислот. Жиры. Жидкости. Сложные эфиры.

«Свойства и применение жиров» - Определение непредельности жиров. Полученный продукт. Немецкий ученый. Жиры являются основным источником энергии живых организмов. Глицерин. Применение жиров. Получение мыла. Химический состав жиров. Химические свойства жиров. Смесь сложных эфиров. Какао-бобы. Корабли пустыни. Уравнение реакции гидролиза жира.

«Сложные эфиры» - Новый антифог. Нитроглицерин. Строение. Получение сложных эфиров. Сложные эфиры жирных кислот. Тищенко Вячеслав Евгеньевич. Соединения. Рисунок. Открытие сложных эфиров. Классификация и состав сложных эфиров. Эфиры изомерны. Структурная изомерия. Масла. Атом водорода. Машинное масло. Производные карбоновых кислот.

«Применение жиров» - Краска. Парфюмерия. Глицерин. Применение жиров. Сколько и каких жиров надо человеку. Свечи. Жиры. Корм для животных. Мыло. Чем сладкое лучше жирного. Шоколад. Прополис.

«Химия Жиры 10 класс» - Вывод: Сильные кислоты вытесняют слабые кислоты из растворов солей. План. Сложные эфиры. Назвать вещества. Жиры. Лабораторный опыт №1 «Действие сильных кислот на мыло» Л. 1.Опрос по теме «Карбоновые кислоты» Вариант №1. Стеариновая кислота. Свойства карб. к-т, сходные с минеральными, на примере уксусной.

«Сложные эфиры и жиры» - Эфир кислот и глицерина. Сложные эфиры имеют большое практическое значение. План урока. 3. Жиры. Жиры – незаменимые продукты питания. Жиры. Роль жиров в жизнедеятельности. Именно так взаимодействуют карбоновые кислоты со спиртами. Чтобы сместить равновесие вправо, необходимо удалять воду или эфир. Растительные жиры называют маслами.


  • Многоатомные спирты – это органические соединения, в молекулах которых содержатся две или более гидроксильных групп, соединенных с углеводородным радикалом .

Спирты, содержащие две ОН группы, называются двухатомными.

Их общая формула С п Н 2п (ОН) 2

Спирты, содержащие три ОН группы, называются трёхатомными.

Их общая формула С п Н 2п-1 (ОН) 3


Название гликоли - объясняется сладким вкусом первого представителя ряда- гликоля (от греч. "гликос"- сладкий). По номенклатуре ИЮПАК эти спирты называются алкандиолы.

Простейшим представителем алкандиолов является спирт состава HO-CH 2 CH 2 -OH , так называемый этиленгликоль или этандиол .

Простейшим трехатомным спиртом является глицерин или пропантриол.


Строение

По строению молекул многоатомные спирты сходны одноатомными. Отличие заключается в том, что в их молекулах имеется несколько гидроксильных групп. Содержащийся в них кислород смещает электронную плотность от атомов водорода. Это и приводит к увеличению подвижности водородных атомов и усилению кислотных свойств.


Физические свойства

Этиленгликоль- представитель двухатомных спиртов -гликолей.

Сиропообразная жидкость сладковатого вкуса, без запаха, ядовит.

Хорошо смешивается с водой и спиртом, гигроскопичен.

Глицерин- представитель трехатомных спиртов- глицеринов .

Бесцветная, вязкая, гигроскопическая жидкость, сладкая на вкус.

Смешивается с водой в любых отношениях.


Получение

  • Гликоли получают окислением алкенов в водной среде. Например, при действии перманганата калия или кислорода воздуха в присутствии серебряного катализатора алкены превращаются в двухатомные спирты:

Получение

  • Другой способ получения многоатомных спиртов – гидролиз галогенпроизводных углеводородов:

Получение

На производстве глицерин получают по схеме:


  • Этиленгликоль и глицерин подобны одноатомным спиртам. Так, они реагируют с активными металлами :

  • Многоатомные спирты в реакции с галогеноводородами обменивают одну или несколько гидроксильных групп ОН на атомы галогена:

  • Глицерин взаимодействует с азотной кислотой с образованием сложных эфиров. В зависимости от условий реакции (мольного соотношения реагентов, концентрации катализатора – серной кислоты и температуры) получаются моно-, ди- и тринитроглицериды:

  • Качественная реакция многоатомных спиртов, позволяющая отличить соединения этого класса, – взаимодействие со свежеприготовленным гидроксидом меди(II). В щелочной среде при достаточной концентрации глицерина голубой осадок Cu(OH) 2 растворяется с образованием раствора ярко-синего цвета – гликолята меди(II):

  • Важным свойством этиленгликоля является способность понижать температуру замерзания воды, от чего вещество нашло широкое применения как компонент автомобильных антифризов и незамерзающих жидкостей.
  • Он применяется для получения лавсана (ценного синтетического волокна).

Применение глицерина

Глицерин находит широкое применение в косметике, пищевой промышленности, фармакологии, производстве взрывчатых веществ. Чистый нитроглицерин взрывается даже при слабом ударе; он служит сырьем для получения бездымных порохов и динамита ― взрывчатого вещества

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Общие сведения Рациональная формула: C3H5(OH)3 Плотность: 1,261 г/см³ Температура Плавления: 18°C Температура Кипения: 290°C

3 слайд

Описание слайда:

История открытия Глицерин был открыт в 1779 г. шведским исследователем Карлом Шееле, который обнаружил, что при нагревании оливкового масла с оксидом свинца образуется раствор сладкого вкуса. Дальнейшее выпаривание раствора позволило ему получить сиропообразную тяжелую жидкость. В 1811 г. Мишель Эжен Шеврель, французский химик-органик, изучая состав сладкой вязкой жидкости, впервые назвал ее глицерином. Химический состав установил Пелуз в 1836 году.

4 слайд

Описание слайда:

Способы получения Глицерин впервые был получен в 1779 году Шееле при омылении жиров в присутствии окислов свинца. Основную массу глицерина получают как побочный продукт при омылении жиров. Большинство синтетических методов получения глицерина основано на использовании пропилена в качестве исходного продукта. Хлорированием пропилена при 450-500° С получают аллилхлорид, при присоединении к последнему хлорноватистой кислоты образуются хлоргидрины, которые при омылении щёлочью превращаются в глицерин. На превращениях аллилхлорида в глицерин через дихлоргидрин или аллиловый спирт основаны другие методы. Известен также метод получения глицерина окислением пропилена в акролеин; при пропускании смеси паров акролеина и изопропилового спирта через смешанный ZnO - MgO катализатор образуется аллиловый спирт. Он при 60-70 °C в водном растворе перекиси водорода превращается в глицерин. Глицерин можно получить также из продуктов гидролиза крахмала, древесной муки, гидрированием образовавшихся моносахаридов или гликолевым брожением сахаров.

5 слайд

Описание слайда:

Физические свойства Глицерин - бесцветная, вязкая, очень гигроскопичная жидкость, смешивается с водой в любых пропорциях. Сладкий на вкус, отчего и получил своё название (др.-греч. γλυκύς - сладкий).

6 слайд

Описание слайда:

Химические свойства 1. В 1846 г. Итальянский химик Асканью Собреро нагрел глицерин со смесью серной и азотной кислот. Полученный продукт при выделении взорвался с огромной силой. Так был открыт тринитрат глицерина. 2. Взаимодействие с галогеноводородами: Взаимодействие глицерина с галогеноводородами или галогенидами фосфора ведёт к образованию моно- и дигалогенгидринов. CH2OH-CHOH-CH2OH + HCl → CH2OH-CHOH-CH2Cl + H2O

7 слайд

Описание слайда:

Химические свойства 3.Качественная реакция: 4. При дегидратации он образует токсичный акролеин: HOCH2CH(OH)-CH2OH→H2C=CH-CHO + 2 H2O и окисляется до глицеринового альдегида CH2OHCHOHCHO, дигидроксиацетона CH2OHCOCH2OH или глицериновой кислоты CH2OHCHOHCOOH.

8 слайд

Описание слайда:

Применение Область применения глицерина разнообразна: пищевая промышленность, табачное производство, медицинская промышленность, производство моющих и косметических средств, сельское хозяйство, текстильная, бумажная и кожевенная отрасли промышленности, производство пластмасс, лакокрасочная промышленность, электротехника и радиотехника (в качестве флюса при пайке). Глицерин относится к группе стабилизаторов обладающих свойствами сохранять и увеличивать степень вязкости, а так же консистенции пищевых продуктов. Зарегистрирован как пищевая добавка Е422, и используется в качестве эмульгатора, при помощи которого смешиваются различные несмешиваемые смеси. Поскольку глицерин хорошо поддается желированию, в отличие, например, от этанола, и, как и этанол, горит без запаха и чада, его используют для изготовления высококачественных прозрачных свечей. Также глицерин используется при изготовлении динамита.

9 слайд

Описание слайда:

Военное дело Глицерин используют для получения нитроглицерина, из которого производят динамит, бездымный порох и другие взрывчатые вещества. Используют в качестве незамерзающих растворов в различных двигателях, тормозной и нагревающей жидкости, для охлаждения стволов орудий.

10 слайд

Описание слайда:

Табачная промышленность Благодаря высокой гигроскопичности глицерин используют для регулирования влажности табака с целью устранения неприятного раздражающего вкуса.

11 слайд

Описание слайда:

Производство пластмасс Глицерин является ценной составной частью при получении пластмасс и смол. Эфиры глицерина широко применяют в производстве прозрачных упаковочных материалов.

12 слайд

Описание слайда:

Пищевая промышленность Глицерин используют для приготовления экстрактов чая, кофе, имбиря и других растительных веществ, которые измельчают, увлажняют и обрабатывают глицерином, нагревают и извлекают водой для получения экстракта, содержащего около 30 % глицерина.

13 слайд

Описание слайда:

Медицинская промышленность Глицерин находит широкое применение в медицине и производстве фармацевтических препаратов. Глицерин обладает антисептическими свойствами, поэтому его применяют для предотвращения заражения ран.

14 слайд

Слайд 2

Общие сведения

Рациональная формула: C3H5(OH)3Плотность: 1,261 г/см³Температура Плавления: 18°CТемпература Кипения: 290°C

Слайд 3

История открытия

Глицерин был открыт в 1779 г. шведским исследователем Карлом Шееле, который обнаружил, что при нагревании оливкового масла с оксидом свинца образуется раствор сладкого вкуса. Дальнейшее выпаривание раствора позволило ему получить сиропообразную тяжелую жидкость. В 1811 г. Мишель ЭженШеврель, французский химик-органик, изучая состав сладкой вязкой жидкости, впервые назвал ее глицерином. Химический состав установил Пелуз в 1836 году.

Слайд 4

Способы получения

Глицерин впервые был получен в 1779 году Шееле при омылении жиров в присутствии окислов свинца. Основную массу глицерина получают как побочный продукт при омылении жиров. Большинство синтетических методов получения глицерина основано на использовании пропилена в качестве исходного продукта. Хлорированием пропилена при 450-500° С получают аллилхлорид, при присоединении к последнему хлорноватистой кислоты образуются хлоргидрины, которые при омылении щёлочью превращаются в глицерин. На превращениях аллилхлорида в глицерин через дихлоргидрин или аллиловый спирт основаны другие методы. Известен также метод получения глицерина окислением пропилена в акролеин; при пропускании смеси паров акролеина и изопропилового спирта через смешанный ZnO - MgO катализатор образуется аллиловый спирт. Он при 60-70 °C в водном растворе перекиси водорода превращается в глицерин. Глицерин можно получить также из продуктов гидролиза крахмала, древесной муки, гидрированием образовавшихся моносахаридов или гликолевым брожением сахаров.

Слайд 5

Физические свойства

Глицерин - бесцветная, вязкая, очень гигроскопичная жидкость, смешивается с водой в любых пропорциях. Сладкий на вкус, отчего и получил своё название (др.-греч. γλυκύς - сладкий).

Слайд 6

Химические свойства

1. В 1846 г. Итальянский химик Асканью Собреро нагрел глицерин со смесью серной и азотной кислот. Полученный продукт при выделении взорвался с огромной силой. Так был открыт тринитрат глицерина. 2. Взаимодействие с галогеноводородами:Взаимодействие глицерина с галогеноводородами или галогенидами фосфора ведёт к образованию моно- и дигалогенгидринов.CH2OH-CHOH-CH2OH + HCl → CH2OH-CHOH-CH2Cl + H2O

Слайд 7

Химические свойства

3.Качественная реакция: 4. При дегидратации он образует токсичный акролеин: HOCH2CH(OH)-CH2OH→H2C=CH-CHO + 2 H2O и окисляется до глицеринового альдегида CH2OHCHOHCHO, дигидроксиацетонаCH2OHCOCH2OH или глицериновой кислоты CH2OHCHOHCOOH.

Слайд 8

Применение

Область применения глицерина разнообразна: пищевая промышленность, табачное производство, медицинская промышленность, производство моющих и косметических средств, сельское хозяйство, текстильная, бумажная и кожевенная отрасли промышленности, производство пластмасс, лакокрасочная промышленность, электротехника и радиотехника (в качестве флюса при пайке). Глицерин относится к группе стабилизаторов обладающих свойствами сохранять и увеличивать степень вязкости, а так же консистенции пищевых продуктов. Зарегистрирован как пищевая добавка Е422, и используется в качестве эмульгатора, при помощи которого смешиваются различные несмешиваемые смеси. Поскольку глицерин хорошо поддается желированию, в отличие, например, от этанола, и, как и этанол, горит без запаха и чада, его используют для изготовления высококачественных прозрачных свечей. Также глицерин используется при изготовлении динамита.

Слайд 9

Военное дело

Глицерин используют для получения нитроглицерина, из которого производят динамит, бездымный порох и другие взрывчатые вещества. Используют в качестве незамерзающих растворов в различных двигателях, тормозной и нагревающей жидкости, для охлаждения стволов орудий.

Слайд 10

Табачная промышленность

Благодаря высокой гигроскопичности глицерин используют для регулирования влажности табака с целью устранения неприятного раздражающего вкуса.

Слайд 11

Производство пластмасс

Глицерин является ценной составной частью при получении пластмасс и смол. Эфиры глицерина широко применяют в производстве прозрачных упаковочных материалов.

Слайд 12

Пищевая промышленность

Глицерин используют для приготовления экстрактов чая, кофе, имбиря и других растительных веществ, которые измельчают, увлажняют и обрабатывают глицерином, нагревают и извлекают водой для получения экстракта, содержащего около 30 % глицерина.

Слайд 13

Медицинская промышленность

Глицерин находит широкое применение в медицине и производстве фармацевтических препаратов. Глицерин обладает антисептическими свойствами, поэтому его применяют для предотвращения заражения ран.

Слайд 14

Электротехника и радиотехника

В радиотехнике глицерин широко используют в производстве электролитических конденсаторов. Глицерин используют при производстве алкидных смол, которые применяют как изоляционный материал.

Слайд 15

Текстильная промышленность

Глицерин в текстильной промышленности применяют в прядении, ткачестве, печатании, крашении и шлихтовании. Он придает тканям эластичность и мягкость. Его используют для получения анилиновых красок, растворителей для красок, а также в качестве антисептической и гигроскопической добавки к краскам для печатания. Глицерин широко используют при производстве синтетического шелка и шерсти.

Слайд 16

Кожевенная промышленность

В кожевенной промышленности глицерин добавляют к водным растворам хлорида бария, который используют в качестве препарата для консервирования кож. Глицерин является одним из компонентов восковых эмульсий для дубления кож.

Слайд 17

Производство моющих и косметических средств

Большое количество сортов туалетного мыла содержит глицерин, который усиливает его моющую способность, придает белизну коже и смягчает ее. Глицериновое мыло способствует удалению красящих веществ кожи, загоревшей на солнце. В косметике полиолы используются в качестве увлажнителей. Глицерин натуральный продукт, получаемый при гидролизе растительных масел. Обладая гигроскопичными свойствами, он увлажняет кожу, придавая ей мягкость и эластичность. Области применения

Посмотреть все слайды