Относительное ско формула. Среднеквадратическое (стандартное) отклонение. Сезонные колебания и индексы сезонности

Среднеквадрати́ческое отклоне́ние (синонимы: среднее квадрати́ческое отклоне́ние , среднеквадрати́чное отклоне́ние , квадрати́чное отклоне́ние ; близкие термины: станда́ртное отклоне́ние , станда́ртный разбро́с ) - в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания . При ограниченных массивах выборок значений вместо математического ожидания используется среднее арифметическое совокупности выборок.

Энциклопедичный YouTube

  • 1 / 5

    Среднеквадратическое отклонение измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического , при построении доверительных интервалов , при статистической проверке гипотез , при измерении линейной взаимосвязи между случайными величинами. Определяется как квадратный корень из дисперсии случайной величины .

    Среднеквадратическое отклонение:

    s = n n − 1 σ 2 = 1 n − 1 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s={\sqrt {{\frac {n}{n-1}}\sigma ^{2}}}={\sqrt {{\frac {1}{n-1}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}};}
    • Примечание: Очень часто встречаются разночтения в названиях СКО (Среднеквадратического отклонения) и СТО (Стандартного отклонения) с их формулами. Например, в модуле numPy языка программирования Python функция std() описывается как "standart deviation", в то время как формула отражает СКО (деление на корень из выборки). В Excel же функция СТАНДОТКЛОН() другая (деление на корень из n-1).

    Стандартное отклонение (оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания на основе несмещённой оценки её дисперсии) s {\displaystyle s} :

    σ = 1 n ∑ i = 1 n (x i − x ¯) 2 . {\displaystyle \sigma ={\sqrt {{\frac {1}{n}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}}.}

    где σ 2 {\displaystyle \sigma ^{2}} - дисперсия ; x i {\displaystyle x_{i}} - i -й элемент выборки; n {\displaystyle n} - объём выборки; - среднее арифметическое выборки:

    x ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + … + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\ldots +x_{n}).}

    Следует отметить, что обе оценки являются смещёнными. В общем случае несмещённую оценку построить невозможно. Однако оценка на основе оценки несмещённой дисперсии является состоятельной .

    В соответствии с ГОСТ Р 8.736-2011 среднеквадратическое отклонение считается по второй формуле данного раздела. Пожалуйста, сверьте результаты.

    Правило трёх сигм

    Правило трёх сигм ( 3 σ {\displaystyle 3\sigma } ) - практически все значения нормально распределённой случайной величины лежат в интервале (x ¯ − 3 σ ; x ¯ + 3 σ) {\displaystyle \left({\bar {x}}-3\sigma ;{\bar {x}}+3\sigma \right)} . Более строго - приблизительно с вероятностью 0,9973 значение нормально распределённой случайной величины лежит в указанном интервале (при условии, что величина x ¯ {\displaystyle {\bar {x}}} истинная, а не полученная в результате обработки выборки).

    Если же истинная величина x ¯ {\displaystyle {\bar {x}}} неизвестна, то следует пользоваться не σ {\displaystyle \sigma } , а s . Таким образом, правило трёх сигм преобразуется в правило трёх s .

    Интерпретация величины среднеквадратического отклонения

    Большее значение среднеквадратического отклонения показывает больший разброс значений в представленном множестве со средней величиной множества; меньшее значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.

    Например, у нас есть три числовых множества: {0, 0, 14, 14}, {0, 6, 8, 14} и {6, 6, 8, 8}. У всех трёх множеств средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения - значения внутри множества сильно расходятся со средним значением.

    В общем смысле среднеквадратическое отклонение можно считать мерой неопределённости. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить. отождествляется с риском портфеля.

    Климат

    Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой на равнине. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

    Спорт

    Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

    Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

    Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от общей средней. В зависимости от исходных данных дисперсия может быть невзвешенной (простой) или взвешенной.

    Дисперсия рассчитывается по следующим формулам:

    · для несгруппированных данных

    · для сгруппированных данных

    Порядок расчета дисперсии взвешенную:

    1. определяют среднюю арифметическую взвешенную

    2. определяются отклонения вариант от средней

    3. возводят в квадрат отклонение каждой варианты от средней

    4. умножают квадраты отклонений на веса (частоты)

    5. суммируют полученные произведения

    6. полученную сумму делят на сумму весов

    Формула для определения дисперсии может быть преобразована в следующую формулу:

    Простая

    Порядок расчета дисперсии простой:

    1. определяют среднюю арифметическую

    2. возводят в квадрат среднюю арифметическую

    3. возводят в квадрат каждую варианту ряда

    4. находим сумму квадратов вариант

    5. делят сумму квадратов вариант на их число, т.е. определяют средний квадрат

    6. определяют разность между средним квадратом признака и квадратом средней

    Также формула для определения дисперсии взвешенной может быть преобразована в следующую формулу:

    т.е. дисперсия равна разности средней из квадратов значений признака и квадрата средней арифметической. При пользовании преобразованной формулой исключается дополнительная процедура по расчету отклонений индивидуальных значений признака от х и исключается ошибка в расчете, связанная с округлением отклонений

    Дисперсия обладает рядом свойств, некоторые из них позволяют упростить ее вычисления:

    1) дисперсия постоянной величины равна нулю;

    2) если все варианты значений признака уменьшить на одно и то же число, то дисперсия не уменьшится;

    3) если все варианты значений признака уменьшить в одно и то же число раз ( раз), то дисперсия уменьшится в раз

    Среднее квадратичное отклонение S - представляет собой корень квадратный из дисперсии:

    · для несгруппированных данных:

    · для вариационного ряда:

    Размах вариации, среднее линейное и среднее квадратичное отклонение являются величинами именованными. Они имеют те же единицы измерения, что и индивидуальные значения признака.

    Дисперсия и среднее квадратическое отклонение наиболее широко применяемые показатели вариации. Объясняется это тем, что они входят в большинство теорем теории вероятности, служащей фундаментом математической статистики. Кроме того, дисперсия может быть разложена на составные элементы, позволяющие оценить влияние различных факторов, обусловливающих вариацию признака.

    Расчет показателей вариации для банков, сгруппированных по размеру прибыли, показан в таблице.

    Размер прибыли, млн. руб. Число банков расчетные показатели
    3,7 - 4,6 (-) 4,15 8,30 -1,935 3,870 7,489
    4,6 - 5,5 5,05 20,20 - 1,035 4,140 4,285
    5,5 - 6,4 5,95 35,70 - 0,135 0,810 0,109
    6,4 - 7,3 6,85 34,25 +0,765 3,825 2,926
    7,3 - 8,2 7,75 23,25 +1,665 4,995 8,317
    Итого: 121,70 17,640 23,126

    Среднее линейное и среднее квадратичное отклонение показывают на сколько в среднем колеблется величина признака у единиц и исследуемой совокупности. Так, в данном случае средняя величина колеблености размера прибыли составляет: по среднему линейному отклонению 0,882 млн. руб.; по среднему квадратическому отклонению - 1,075 млн. руб. Среднее квадратическое отклонение всегда больше среднего линейного отклонения. Если распределение признака, близко к нормальному, то между S и d существует взаимосвязь: S=1,25d, или d=0,8S. Среднее квадратическое отклонение показывает как расположена основная масса единиц совокупности относительно средней арифметической. Независимо от формы распределения 75 значений признака попадают в интервал х 2S, а по крайне мере 89 всех значений попадают интервал х 3S (теорема П.Л.Чебышева).

    Цель данной статьи показать , как математические формулы, с которыми вы можете столкнуться в книгах и статьях, разложить на элементарные функции в Excel.

    В данной статье мы разберем формулы среднеквадратического отклонения и дисперсии и рассчитаем их в Excel .

    Перед тем как переходить к расчету среднеквадратического отклонения и разбирать формулу, желательно разобраться в элементарных статистических показателях и обозначениях.

    Рассматривая формулы моделей прогнозирования, мы встретимся со следующими показателями:


    Например, у нас есть временной ряд - продажи по неделям в шт.

    Неделя

    Отгрузка, шт

    Для этого временного ряда i=1, n=10 , ,

    Рассмотрим формулу среднего значения:

    Неделя

    Отгрузка, шт

    Для нашего временного ряда определим среднее значение

    Также для выявления тенденций помимо среднего значения представляет интерес и то, насколько наблюдения разбросаны относительно среднего. Среднеквадратическое отклонение показывает меру отклонения наблюдений относительно среднего.

    Формула расчета среднеквадратического отклонение для выборки следующая:

    Разложим формулу на составные части и рассчитаем среднеквадратическое отклонение в Excel на примере нашего временного ряда.

    1. Рассчитаем среднее значение для этого воспользуемся формулой Excel =СРЗНАЧ(B11:K11)


    2. Определим отклонение каждого значения ряда относительно среднего


    для первой недели = 6-10=-4

    для второй недели = 10-10=0

    для третей = 7-1=-3 и т.д.

    3. Для каждого значения ряда определим квадрат разницы отклонения значений ряда относительно среднего

    для первой недели = (-4)^2=16

    для второй недели = 0^2=0

    для третей = (-3)^2=9 и т.д.

    4. Рассчитаем сумму квадратов отклонений значений относительно среднего с помощью формулы =СУММ(ссылка на диапазон (ссылка на диапазон с )

    Среднеквадрати́ческое отклоне́ние (среднее квадрати́ческое отклоне́ние , среднеквадрати́чное отклоне́ние , квадрати́чное отклоне́ние , станда́ртное отклоне́ние , станда́ртный разбро́с ) - в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания . Обычно указанные термины означают квадратный корень из дисперсии случайной величины, но иногда могут означать тот или иной вариант оценки этого значения.

    В литературе обычно обозначают греческой буквой σ {\displaystyle \sigma } (сигма).

    Основные сведения

    Среднеквадратическое отклонение определяется как квадратный корень из дисперсии случайной величины : σ = D [ X ] {\displaystyle \sigma ={\sqrt {D[X]}}} .

    Среднеквадратическое отклонение измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического , при построении доверительных интервалов , при статистической проверке гипотез , при измерении линейной взаимосвязи между случайными величинами.

    На практике, когда вместо точного распределения случайной величины в распоряжении имеется лишь выборка, стандартное отклонение, как и математическое ожидание, оценивают (выборочная дисперсия), и делать это можно разными способами. Термины «стандартное отклонение» и «среднеквадратическое отклонение» обычно применяют к квадратному корню из дисперсии случайной величины (определённому через её истинное распределение), но иногда и к различным вариантам оценки этой величины на основании выборки.

    В частности, если x i {\displaystyle x_{i}} - i -й элемент выборки, n {\displaystyle n} - объём выборки, x ¯ {\displaystyle {\bar {x}}} - среднее арифметическое выборки (выборочное среднее - оценка математичекого ожидания величины):

    x ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + … + x n) , {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\ldots +x_{n}),}

    то два основных способа оценки стандартного отклонения записываются нижеследующим образом.

    Оценка стандартного отклонения на основании смещённой оценки дисперсии (иногда называемой просто выборочной дисперсией ):

    S = 1 n ∑ i = 1 n (x i − x ¯) 2 . {\displaystyle S={\sqrt {{\frac {1}{n}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}}.}

    Кроме того, среднеквадратическим отклонением называют математическое ожидание квадрата разности истинного значения случайной величины и её оценки для некоторого метода оценки . Если оценка несмещённая (выборочное среднее - как раз несмещённая оценка для случайной величины), то эта величина равна дисперсии этой оценки.

    Правило трёх сигм

    Правило трёх сигм () гласит: вероятность того, что любая случайная величина отклонится от своего среднего значения менее чем на 3 σ {\displaystyle 3\sigma } - P (| ξ − E ξ ∣< 3 σ) ≥ 8 9 {\displaystyle P(|\xi -E\xi \mid <3\sigma)\geq {\frac {8}{9}}} .

    Климат

    Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой на равнине. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

    Спорт

    Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

    Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

    Пример вычисления стандартного отклонения оценок учеников

    Предположим, что интересующая нас группа (генеральная совокупность) это класс из восьми учеников, которым выставляются оценки по 10-бальной системе. Так как мы оцениваем всю группу, а не её выборку, можно использовать стандартное отклонение на основании смещённой оценки дисперсии. Для этого берём квадратный корень из среднего арифметического квадратов отклонений величин от их среднего значения.

    Пусть оценки учеников класса следующие:

    2 , 4 , 4 , 4 , 5 , 5 , 7 , 9. {\displaystyle 2,\ 4,\ 4,\ 4,\ 5,\ 5,\ 7,\ 9.}

    Тогда средняя оценка равна:

    μ = 2 + 4 + 4 + 4 + 5 + 5 + 7 + 9 8 = 5 {\displaystyle \mu ={\frac {2+4+4+4+5+5+7+9}{8}}=5}

    Вычислим квадраты отклонений оценок учеников от их средней оценки.

    Вариация — это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение и является необходимым звеном в экономическом анализе. Необходимость изучения вариации связана с тем, что средняя, являясь равнодействующей, выполняет свою основную задачу с разной степенью точности: чем меньше различия индивидуальных значений признака, подлежащих осреднению, тем однороднее совокупность, а, следовательно, точнее и надежнее средняя, и наоборот. Следовательно по степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию.

    Изменение вариации признака в совокупности осуществляется с помощью абсолютных и относительных показателей.

    Абсолютные показатели вариации включают:

    Размах вариации (R)

    Размах вариации — это разность между максимальным и минимальным значениями признака

    Он показывает пределы, в которых изменяется величина признака в изучаемой .

    Пример . Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет.
    Решение: размах вариации = 9 — 2 = 7 лет.

    Для обобщенной характеристики различий в значениях признака вычисляют средние показатели вариации, основанные на учете отклонений от средней арифметической. За отклонение от средней принимается разность .

    При этом во избежании превращения в нуль суммы отклонений вариантов признака от средней (нулевое свойство средней) приходится либо не учитывать знаки отклонения, то есть брать эту сумму по модулю , либо возводить значения отклонений в квадрат

    Среднее линейное и квадратическое отклонение

    Среднее линейное отклонение — это из абсолютных отклонений отдельных значений признака от средней.

    Среднее линейное отклонение простое:

    Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет.

    В нашем примере: лет;

    Ответ: 2,4 года.

    Среднее линейное отклонение взвешенное применяется для сгруппированных данных:

    Среднее линейное отклонение в силу его условности применяется на практике сравнительно редко (в частности, для характеристики выполнения договорных обязательств по равномерности поставки; в анализе качества продукции с учетом технологических особенностей производства).

    Среднее квадратическое отклонение

    Наиболее совершенной характеристикой вариации является среднее квадратическое откложение, которое называют стандартом (или стандартным отклонение). () равно квадратному корню из среднего квадрата отклонений отдельных значений признака от :

    Среднее квадратическое отклонение простое:

    Среднее квадратическое отклонение взвешенное применяется для сгруппированных данных:

    Между средним квадратическим и средним линейным отклонениями в условиях нормального распределения имеет место следующее соотношение: ~ 1,25.

    Среднее квадратическое отклонение, являясь основной абсолютной мерой вариации, используется при определении значений ординат кривой нормального распределения, в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик, а также при оценке границ вариации признака в однородной совокупности.

    Дисперсия

    Дисперсия - представляет собой средний квадрат отклонений индивидуальных значений признака от их средней величины.

    Дисперсия простая:

    В нашем примере:

    Дисперсия взвешенная:

    Более удобно вычислять дисперсию по формуле:

    которая получается из основной путем несложных преобразований. В этом случае средний квадрат отклонений равен средней из квадратов значений признака минус квадрат средней.

    Для несгрупиированных данных:

    Для сгруппированных данных:

    Вариация альтернативного признака заключается в наличии или отсутствии изучаемого свойства у единиц совокупности. Количественно вариация альтернативного признака выражается двумя значениями: наличие у единицы изучаемого свойства обозначается единицей (1), а его отсутствие — нулем (0). Долю единиц, обладающих изучаемым признаком, обозначают буквой , а долю единиц, не обладающих этим признаком — через . Учитывая, что p + q = 1 (отсюда q = 1 — p), а среднее значение альтернативного признака равно

    ,

    средний квадрат отклонений

    Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным свойством (), на долю единиц, данным свойством не обладающих ().

    Максимальное значение средний квадрат отклонения (дисперсия) принимает в случае равенства долей, т.е. когда т.е. . Нижняя граница этого показателя равна нулю, что соответствует ситуации, при которой в совокупности отсутствует вариация. Среднее квадратическое отклонение альтернативного признака:

    Так, если в изготовленной партии 3% изделий оказались нестандартными, то дисперсия доли нестандартных изделий , а среднее квадратическое отклонение или 17,1%.

    Среднее квадратическое отклонение равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической.

    Относительные показатели вариации

    Относительные показатели вариации включают:

    Сравнение вариации нескольких совокупностей по одному и тому же признаку, а тем более по различным признакам с помощью абсолютных показателей не представляется возможным. В этих случаях для сравнительной оценки степени различия строят относительные показатели вариации. Они вычисляются как отношения абсолютных показателей вариации к средней:

    Рассчитываются и другие относительные характеристики. Например, для оценки вариации в случае асимметрического распределения вычисляют отношение среднего линейного отклонения к медиан

    так как благодаря свойству медианы сумма абсолютных отклонений признака от ее величины всегда меньше, чем от любой другой.

    В качестве относительной меры рассеивания, оценивающей вариацию центральной части совокупности, вычисляют относительное квартильное отклонение , где — средний квартиль полусуммы разности третьего (или верхнего) квартиля () и первого (или нижнего) квартиля ().

    На практике чаще всего вычисляют коэффициент вариации. Нижней границей этого показателя является нуль, верхнего предела он не имеет, однако известно, что с увеличением вариации признака увеличивается и его значение. Коэффициент вариации является в известном смысле критерием однородности совокупности (в случае нормального распределения).

    Рассчитаем коэффициент вариации на основе среднего квадратического отклонения для следующего примера. Расход сырья на единицу продукции составил (кг): по одной технологии при , а по другой — при. Непосредственное сравнение величины средних квадратических отклонений могло бы привести к неверному представлению о том, что вариация расхода сырья по первой технологии интенсивнее, чем по второй (. Относительная мера вариации ( позволяет сделать противоположный вывод

    Пример расчета показателей вариации

    На этапе отбора кандидатов для участия в осуществлении сложного проекта фирма объявлила конкурс профессионалов. Распределение претендентов по опыту работы показало средующие результаты:

    Вычислим средний производственный опыт работы, лет

    Рассчитаем дисперсию по продолжительности опыта работы

    Такой же результат получается, если использовать для расчета другую формулу расчета дисперсии

    Вычислим среднее квадратическое отклонение, лет:

    Определим коэффициент вариации, %:

    Правило сложения дисперсий

    Для оценки влияния факторов, определяющих вариацию, используют прием группировки: совокупность разбивают на группы, выбрав в качестве группировочного признака один из определяющих факторов. Тогда наряду с общей дисперсией, рассчитанной по всей совокупности, вычисляют внутигрупповую дисперсию (или среднюю из групповых) и межгрупповую дисперсию (или дисперсию групповых средних).

    Общая дисперсия характеризует вариацию признака во всей совокупности, сложившуюся под влиянием всех факторов и условий.

    Межгрупповая дисперсия измеряет систематическую вариацию, обусловленную влиянием фактора, по которому произведена группировка:

    Внутригрупповая дисперсия оценивает вариацию признака, сложившуюся по влиянием других, неучитываемых в данном исследовании факторов и независящую от фактора группировки. Она определяется как средняя из групповых дисперсий.

    Все три дисперсии () связаны между собой следующим равенством, которое известно как правило сложения дисперсий:

    на этом соотношении строятся показатели, оценивающие влияние признака группировки на образование общей вариации. К ним относятся эмпирический коэффициент детерминации () и эмпирическое корреляционное отношение ()

    () характеризует долю межгрупоовой дисперсии в общей дисперсии:

    и показывает насколько вариация признака в совокупности обусловлена фактором группировки.

    Эмпирическое корреляционное отношение (!!\eta = \sqrt{ \frac{\delta^2}{\sigma^2} }

    оценивает тесноту связи между изучаемым и группировочным признаками. Предельными значениями являются нуль и единица. Чем ближе к единице, тем теснее связь.

    Пример. Стоимость 1 кв.м общей площади (усл.ед) на рынке жилья по десяти 17-м домам улучшенной планировки составляла:

    При этом известно, что первые пять домов были построены вблизи делового центра, а остальные — на значительном расстоянии от него.

    Для рассчета общей дисперсии вычислим среднюю стоимость 1 кв.м. общей площади: Общую дисперсию определим по формуле:

    Вычислим среднюю стоимость 1 кв.м. и дисперсию по этому показателю для каждой группы домов, отличающихся месторасположением относительно центра города:

    а) для домов, построенных вблизи центра:

    б) для домов, построенных далеко от центра:

    Вариация стоимости 1 кв.м. общей площади, вызванная изменением местоположения домов, определяется величиной межгрупповой дисперсии :

    Вариация стоимости 1 кв.м. общей площади, обусловленная изменением остальных неучитываемых нами показателей, измеряется величиной внутригрупповой дисперсии

    Найденные дисперссии в сумме дают величину общей дисперсии

    Эмпирический коэффициент детерминации :

    показывает, что дисперсия стоимости 1.кв.м. общей площади на рынке жилья на 81,8% объясняется различиями в расположении новостроек по отношению к деловому центру и на 18,2% — другими факторами.

    Эмприческое корреляционное отношение свидетельствует о существенном влиянии на стоимость жилья месторасположения домов.

    Правило сложения дисперсий для доли признака записывается так:

    а три вида дисперсий доли для сгруппированных данных определяется по следующим формулам:

    общая дисперсия:

    Формулы межгрупповой и внутригрупповой дисперсий:

    Характеристики формы распределения

    Для получения представления о форме распределения используются показатели среднего уровня ( , ), показатели вариации, ассиметрии и эксцесса.

    В симметричных распределениях средняя арифметическая, мода и медиана совпадают (. Если это равенство нарушается — распределение ассиметрично.

    Простейшим показателем ассиметрии является разность , которая в случае правосторонней ассиметрии положительна, а при левосторонней — отрицательна.

    Ассиметричное распределение

    Для сравнения ассиметрии нескольких рядов вычисляется относительный показатель

    В качестве обобщающих характеристик вариации используются центральные моменты распределения -го порядка , соответствующие степени, в которую возводятся отклонения отдельных значений признака от средней арифметической:

    Для несгруппированных данных:

    Для сгруппированных данных:

    Момент первого порядка согласно свойству средней арифметической равен нулю .

    Момент второго порядка является дисперсией .

    Моменты третьего и четвертого порядков используются для построения показателей, оценивающих особенности формы эмпирических распределений.

    С помощью момента третьего порядка измеряют степень скошенности или ассиметричности распределения.

    — коэффициент ассиметрии

    В симметричных распределениях , как все центральные моменты нечетного порядка.Неравенство нулю центрального момента третьего порядка указывает на асимметричность распределения. При этом, если , то асимметрия правосторонняя и относительно максимальной ординаты вытянута правая ветвь; если , то асимметрия левосторонняя (на графике это соответствует вытянутости левой ветви).

    Для характеристики островершинности или плосковершинности распределения вычисляют отношение момента четвертого порядка () к среднеквадратическому отклонению в четвертой степени (). Для нормального распределения , поэтому эксцесс находят по формуле:

    Для нормального распределения обращается в нуль. Для островершинных распределений , для плосковершинных .

    Эксцесс распределения

    Кроме показателей, рассмотренных выше, обобщающей характеристикой вариации в однородной совокупности служит определенный порядок в изменении частот распределения в соответствии с изменениями величины изучаемого признака, называемый закономерностью распределения .

    Характер (тип) закономерности распределения может быть выявлен путем построения вариационного ряда на основании большого объема наблюдений, а также такого выбора числа групп и величины интегралов, при котором наиболее отчетливо могла бы проявиться закономерность.

    Анализ вариационных рядов предполагает выявление характера распределения (как результата действия механизма вариации), установление функции распределения, проверку соответствия эмпирического распределения теоретическому.

    Эмпирическое распределение , полученное на основе данных наблюдения, графически изображается эмпирической кривой распределения с помощью полигона.

    На практике встречаются различные типы распределений, среди которых можно выделить симметричные и асимметричные, одновершинные и многовершинные.

    Установить тип распределения, означает выразить механизм формирования закономерности в аналитической форме. Многим явлениям и их признакам свойственны характерные формы распределения, которые аппроксимируются соответствующими кривыми. При всем многообразии форм распределения наибольшее распространение в качестве теоретических получили нормальное распределение, распределение Пауссона, биноминальное распределение и др.

    Особое место в изучении вариации принадлежит нормальному закону, благодаря его математическим свойствам. Для нормального закона выполняется правило трех сигм, по которому вариация индивидуальных значений признака находится в пределах от величины средней. При этом в границах находится около 70% всех единиц, а в пределах — 95%.

    Оценка соответствия эмпирического и теоретического распределений производится с помощью критериев согласия, среди которых широко известны критерии Пирсона, Романовского, Ястремского, Колмогорова.