Интерференция. презентация к уроку по физике (11 класс) на тему. Применение интерференции света. Дифракция света. (Презентация) Дифракция световых волн


  • На поверхность стекла наносят тонкую пленку


Просветленная оптика

Отражение света для крайних участков спектра - красного и фиолетового - будет меньшим. Объектив имеет сиреневый оттенок.



  • Отклонение направления распространения волн от прямолинейного у границы преграды (огибание волнами препятствий)
  • Условие: размеры препятствия должны быть сравнимы с длиной волны




Опыт Гримальди

  • В середине 17-го века итальянский ученый Франческа Мария Гримальди наблюдал странные тени от небольших предметов, помещенных в очень узкий пучок света. К удивлению ученого, эти тени не имели резких границ, а были почему-то окаймлены цветными полосами.

Условия наблюдения

  • - размеры препятствия должны быть соизмеримы с длиной световой волны
  • - расстояние от препятствия до точки наблюдения должно быть гораздо больше размеров препятствия

В результате дифракции накладываются световые волны, приходящие из разных точек (когерентные волны), и наблюдается интерференция волн



Дифракция проявляется в нарушении прямолинейности распространения света!


Принцип Гюйгенса Френеля

  • Каждая точка волнового фронта является источником вторичных волн, причем все вторичные источники когерентны.

  • Френель доказал прямолинейность распространения света и рассмотрел количественно дифракцию на различного рода препятствиях.


Особенности

дифракционной картины

Объяснение

Размеры изображения щели

больше размеров,

полученных путем

геометрических

построений

Вторичные волны заходят за

края щели


Особенности

дифракционной картины

Объяснение

В центре картины возникает

светлая полоса

Вторичные волны в

направлении,

перпендикулярном щели,

имеют одинаковую

фазу. Поэтому при их

наложении амплитуда

колебаний увеличивается


Особенности дифракционной

Объяснение

По краям картины - чередование

светлых и темных полос

Вторичные волны интерферируют

в направлении под углом к

перпендикуляру к щели,

имея некоторую разность фаз, от

которой зависит результирующая

амплитуда колебаний




  • Дифракция не позволяет получить отчетливые изображения мелких предметов, так как свет огибает предметы.
  • Изображения получаются размытыми. Это происходит, когда линейные размеры предметов меньше длины световой волны.

Разрешающая способность микроскопа и телескопа

Если две звезды находятся на малом угловом расстоянии друг от друга, то эти кольца налагаются друг на друга, и глаз не может различить, имеются ли две светящиеся точки или одна.


Интерференция механических волн.Сложение волн
Что происходит со звуковыми волнами при
беседе нескольких человек, когда играет оркестр,
поет хор и т.д.?
Что мы наблюдаем, когда в воду одновременно
падают два камня
или капли?

Проследим это на механической модели

Мы наблюдаем
чередование
светлых и темных
полос.
Это означает, в что
любой точке
поверхности
колебания
складываются.

d1
d2
d
d1
d2
Амплитуда колебаний среды в данной точке максимальна, если разность
хода двух волн, возбуждающих колебания в этой точке равна целому
числу длин волн: Где k = 0,1,2…Минимальна если нечетному числу
полуволн.
d k
d (2k 1)
2

Интерференция.

Сложение в пространстве волн, при котором образуется
постоянное во времени распределение амплитуд
результирующих колебаний, называется интерференцией.

Когерентные волны.

Для образования устойчивой
интерференционной картины
необходимо, чтобы
источники волн имели
одинаковую частоту и
разность фаз их
колебаний была постоянной.
Источники, удовлетворяющие
этим условиям, называются
когерентными.

Интерференция света

Для получения устойчивой интерференционной
картины нужны согласованные волны. Они должны
иметь одинаковую длину волны и постоянную
разность фаз в любой точке пространства.

Интерференция в тонких пленках.

Томас Юнг первым объяснил
почему тонкие пленки
окрашены в разные цвета.
Интерференция световых
волн - сложение двух волн,
вследствие которого
наблюдается устойчивая
во времени картина усиления
или ослабления световых колебаний в различных точках
пространства.

Схема опыта Юнга

Наблюдение интерференции в лабораторных условиях

Интерференционные максимумы и минимумы

Интерференционные максимумы наблюдаются в
точках, для которых разность хода волн ∆d равна
четному числу полуволн, или, что то же самое, целому
числу волн:
d 2k k ,
2
(k 0,1,2,3,...)
Амплитуда колебаний среды в данной точке
минимальна, если разность хода двух волн, равна
нечётному числу полуволн:

Мыльные пузыри

Кольца Ньютона

Плоско выпуклая линза с
очень малой кривизной
лежит на стеклянной
пластинке. Если её
осветить
перпендикулярным
пучком однородных
лучей, то вокруг темного
центра появится система
светлых и темных
концентрических
окружностей.

Расстояние между
окрашенными кольцами
зависит от цвета; кольца
красного цвета отстоят друг
от друга дальше, чем
кольца голубые. Кольца
Ньютона можно также
наблюдать в проходящем
свете. Цвета в проходящем
свете являются
дополнительными к цветам
в отраженном свете.

Если поместить между
пластинкой и линзой
какую-нибудь жидкость, то
положение колец
изменится (ρ станет
меньше). Из отношения
обоих значений λ для
одного цвета (одинаковая
частота) можно определить
скорость света в жидкости.

Дифракция- отклонение от прямолинейного распространения волн.

Дифракция световых волн

Опыт Юнга

Теория Френеля.

Волновая поверхность в любой момент времени
представляет собой не просто огибающую вторичных волн, а
результат их интерференции.

Просмотр через капрон,
органзу
Круглое отверстие
Круглый экран

Дифракционная решёткаоптический прибор,
представляющий собой
совокупность большого
числа параллельных,
равноотстоящих друг от
друга штрихов
одинаковой формы,
нанесённых на плоскую
или вогнутую оптическую
поверхность.

Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d. Если

известно число штрихов (N), приходящихся на 1 мм
решётки, то период решётки находят по формуле: d = 1 / N мм.
Формула дифракционной решётки:
где




- угол
d - период решётки,
α - угол максимума
данного цвета,
k - порядок
максимума,
λ - длина волны.

ДИФРАКЦИЯ СВЕТА

УРОК ФИЗИКИ - ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА, С ИСПОЛЬЗОВАНИЕМ

ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫХ

ТЕХНОЛОГИЙ

ПРЕПОДАВАТЕЛЬ:

КУРНОСОВА СВЕТЛАНА АЛЕКСАНДРОВНА


ПЛАН УРОКА

1. Дифракция механических волн.

2. Дифракция света:

а) Опыт Юнга;

б) Принцип Гюйгенса-Френеля;

в) Условия наблюдения дифракции света.

3. Применение дифракции света.

4. Дифракционная решетка.

5. Закрепление урока.

6. Домашнее задание.


ЦЕЛЬ УРОКА

1. Изучить условия возникновения дифракции волн.

2. Объяснить явление дифракции света, используя принцип Гюйгенса-Френеля.

3.Убедиться, что дифракция свойственна свету.


ДИФРАКЦИЯ

МЕХАНИЧЕСКИХ ВОЛН

ПРОЯВЛЯЕТСЯ КАК:

нарушение

целостности фронта световой волны

из-за неоднородности среды

нарушение закона

прямолинейного

распространения света.



ЗАДАЧИ

1.ПОЧЕМУ МОЖНО СЛЫШАТЬ СИГНАЛ АВТОМОБИЛЯ ЗА УГЛОМ ЗДАНИЯ, КОГДА САМОЙ МАШИНЫ НЕ ВИДНО?

2. ПОЧЕМУ МЫ КРИЧИМ В ЛЕСУ, ЧТОБЫ НЕ ПОТЕРЯТЬ СВОИХ ДРУЗЕЙ?


Когда размеры препятствий малы, волны, огибая края препятствий, смыкаются за ними. Способность огибать препятствия обладают звуковые волны


"Свет распространяется или рассеивается не только

прямолинейно, отражением и преломлением,

но и также четвертям способом - дифракцией" (Ф.Гримальди 1665г.)

Дифракционные явления были хорошо известны еще во времена Ньютона.

Первое качественное объяснение явления дифракции на основе волновых представлений было дано английским ученым Т. Юнгом.


ОПЫТ Т. ЮНГА

Свет от Солнца падал на экран с узкой щелью S.Прошедшая через щель световая волна затем падала на второй экран уже с двумя щелями S1 и S2. Когда в область перекрытия световых волн, идущих от S1 и S2 помещался третий экран, то на нем появлялись параллельные интерференционные полосы, содержащие (по словам Юнга) «красивое разнообразие оттенков, постепенно переходящие один в другой». Именно с помощью этого опыта Юнг смог измерить длины волн световых лучей разного цвета.


Дифракция - явление распространения

света в среде с резкими

неоднородностями (вблизи границ прозрачных

и непрозрачных тел,

сквозь малые отверстия).

ПРИНЦИП ГЮЙГЕНСА-ФРЕНЕЛЯ

Дифракционная картина является

результатом интерференции вторичных световых волн, возникающих в каждой

точке поверхности, достигнутой к какому-либо моменту данной световой волной.


Длина волны;

D- размер препятствия;

l-расстояние от препятствия до точки наблюдения результата дифракции (дифракционной картины)

Условие наблюдения дифракции:


Примеры дифракционных картин

от различных препятствий

от круглого отверстия;

от тонкой проволоки или щели;

от круглого экрана;


ДИФРАКЦИОННАЯ РЕШЕТКА

(СОВОКУПНОСТЬ БОЛЬШОГО ЧИСЛА РЕГУЛЯРНО РАСПОЛОЖЕННЫХ ЩЕЛЕЙ И ВЫСТУПОВ, НАНЕСЕННЫХ НА НЕКОТОРУЮ ПОВЕРХНОСТЬ)

ПРОЗРАЧНЫЕ

ОТРАЖАТЕЛЬНЫЕ

Штрихи наносятся на зеркальную (металлическую) поверхность

Штрихи наносятся на прозрачную (стеклянную) поверхность


ФОРМУЛА ДИФРАКЦИОННОЙ РЕШЕТКИ

dsinα=n

d- период дифракционной решетки;

n- порядок максимума;

Угол, под которым наблюдается максимум дифракционной решетки;

Длина волны.

Разложение белого света в спектр


Задачи на дифракцию света

1. На поверхности лазерного диска

видны цветные полоски.

Почему?

2. Подумайте как можно быстро

изготовить дифракционную решетку.


Ответы на задачи

1. Поверхность лазерного диска состоит из ячеек, которые играют роль щелей дифракционной решетки. Цветные полосы – это дифракционная картина.

2. Если посмотреть сквозь ресницы глаз на яркий свет, то можно наблюдать спектр. Ресницы глаз можно считать «грубой» дифракционной решеткой, так как расстояние между ресничками глаза достаточно большое.


Задачи на дифракцию света

1. НА ДИФРАКЦИОННУЮ РЕШЕТКУ,

ИМЕЮЩУЮ 500 ШТРИХОВ НА КАЖДОМ МИЛЛИМЕТРЕ,

ПАДАЕТ СВЕТ С ДЛИНОЙ ВОЛНЫ450 НМ.

ОПРЕДЕЛИТЕ НАИБОЛЬШИЙ ПОРЯДОК МАКСИМУМА,

КОТОРЫЙ ДАЕТ ЭТА РЕШЕТКА.


  • 2. Дано СИ Решение
  • d= мм= м Максимальный порядок max можно
  • найти взяв максимальный угол
  • =450нм= 45*10 -8 м при прохождении через щели
  • n max - ? решетки т.е. α max =90 0
  • dsinα= n ; n max = ;
  • n max = =4
  • Ответ: n max =4

  • § 48 - 50
  • Экспериментальные задачи:
  • В куске картона сделайте иглой отверстие и посмотрите через него на раскалённую нить электрической лампы. Что вы видите? Объясните. Посмотрите на нить электрической лампы через птичье перо, батистовый платок или капроновую ткань. Что вы наблюдаете? Объясните.
  • В куске картона сделайте иглой отверстие и посмотрите через него на раскалённую нить электрической лампы. Что вы видите? Объясните.
  • Посмотрите на нить электрической лампы через птичье перо, батистовый платок или капроновую ткань. Что вы наблюдаете? Объясните.

Итоги урока:

  • Дифракция механических волн.

2. Опыт Юнга.

3. Принцип Гюйгенса – Френеля.

4. Дифракция света.

5. Дифракционная решетка.


Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
Презентация учителя МОУ «СОШ №56 с УИОП» г. СаратоваСуховой Татьяны Михайловны Интерференция света. Интерференцией называется сложение двух (или нескольких) световых волн, при котором в одних точках пространства происходит усиление интенсивности света, а в других –ослабление.Условия когерентности световых волн.Волны, разность фаз которых не зависит от времени называются когерентными. Проявления в природе.Применение интерференции.Явление интерференции света находит широкое применение в современной технике. Одним из таких применений является создание "просветленной" оптики. Явление огибания механическими волнами преград наблюдается когда речные волны свободно огибают выступающие из воды предметы и распространяются так, как будто этих предметов не было совсем. Явление, свойственное всем волновым процессам. Звуковые волны так же огибают препятствия и мы можем слышать сигнал автомобиля за углом дома, когда самого автомобиля не видно. План урока.1. Опыт Юнга.2. Что такое дифракция.3. Принцип Гюгенса.4. Принцип Гюгенса-Френеля.5. Дифракционные картины от различных препятствий.6. Границы применимости геометрической оптики.7. Разрешающая способность оптических приборов.8. Вывод. В середине 17-го века итальянский ученый Ф. Гримальди наблюдал странные тени от небольших предметов, помещенных в узкий пучок света. Эти тени не имели четких границ, были окаймлены цветными полосами. Дифракция света – огибание световой волной непрозрачных тел с проникновением в область геометрической тени и образованием там интерференционной картины. В становлении представлений о том, что распространение света является волновым процессом, большую роль сыграл Христиан Гюйгенс. Каждая точка поверхности, достигнутая световой волной, является вторичным источником световых волн. Огибающая вторичных волн становится волновой поверхностью в следующий момент времени. Огюстен Френель заложил основы волновой оптики, дополнив принцип Гюйгенса идеей интерференции вторичных волн: он построил количественную теорию дифракции. Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн. Наиболее отчетливо дифракция света проявляется тогда, когда выполняется данное условие (условие наблюдения дифракции).Где D- размер препятствия или отверстия, - длина световой волны, L- расстояние от препятствия до места, где наблюдается дифракционная картина. l 2 D L Дифракция налагает также предел на разрешающую способность телескопа. Предельное угловое расстояние() между светящимися точками, при котором их можно различать, определяется отношением длины волны() к диаметру объектива (D). Дифракцию света используют для создания чувствительных спектральных приборов. Дифракционные явления приносят не только пользу, но и вред, ограничивая разрешающую способность оптических приборов. II ВАРИАНТ 1. Б2. В3. Б4. Д5.6. Д7. Г 1. А2. Б3. А4. Г5. 6. А7.А 1. Что такое дифракция?2. Сформулируйте принцип Гюйгенса.3.Сформулируйте принцип Гюйгенса-Френеля.4. Как получить в центре дифракционной картины отверстия темное или светлое пятно?5. Границы применимости геометрической оптики.6. Разрешающая способность оптических приборов. Нет отдельно интерференции и отдельно дифракции – это единое явление, но в определённых условиях больше выступают интерференционные, в других – дифракционные свойства света. Мякишев Г.Я., Буховцев Б.Б. Физика: учебник для 11кл. – М.:ПросвещениеЖелезовский Б.Я. Лекции по оптике для студентов СГУОбразовательные комплексы. Физика,7-11 кл, Библиотека наглядных пособийПрограммы Физикона, Физика 7-11 кл, Локальная версияКирилл и Мифодий, Учебные электронные издания БЭНП Физика