Свойства чистой меди как металла: ковка меди и медных сплавов. Медь: температура плавления, физические свойства, сплавы Удельная прочность меди

Медь - это пластичный золотисто-розовый металл с характерным металлическим блеском. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Сu (Cuprum) и находится под порядковым номером 29 в I группе (побочной подгруппе), в 4 периоде.

Латинское название Cuprum произошло от имени острова Кипр. Известны факты, что на Кипре ещё в III веке до нашей эры находились медные рудники и местные умельцы выплавляли медь. Купить медь можно в комании « ».

По данным историков, знакомству общества с медью около девяти тысячелетий. Самые древние медные изделия найдены во время археологических раскопок на местности современной Турции. Археологи обнаружили маленькие медные бусинки и пластинки для украшения одежды. Находки датируются рубежом VIII-VII тыс. до нашей эры. Из меди в древности изготавливали украшения, дорогую посуду и различные инструменты с тонким лезвием.

Великим достижением древних металлургов можно назвать получение сплава с медной основой - бронзы.

Основные свойства меди

1. Физические свойства.

На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.

Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.

Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.

Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток , протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.

Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) - верхнего слоя платины.
Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.

Способы получения меди

В природе медь существует в соединениях и в виде самородков. Соединения представлены оксидами, гидрокарбонатами, сернистыми и углекислыми комплексами, а также сульфидными рудами. Самые распространённые руды - это медный колчедан и медный блеск. Содержание меди в них составляет 1-2%. 90% первичной меди добывают пирометаллургическим способом и 10% гидрометаллургическим.

1. Пирометаллургический способ включает в себя такие процессы: обогащение и обжиг, плавка на штейн, продувка в конвертере, электролитическое рафинирование.
Обогащают медные руды методом флотации и окислительного обжига. Сущность метода флотации заключается в следующем: частицы меди, взвешенные в водной среде, прилипают к поверхности пузырьков воздуха и поднимаются на поверхность. Метод позволяет получить медный порошкообразный концентрат, который содержит 10-35% меди.

Окислительному обжигу подлежат медные руды и концентраты со значительным содержанием серы. При нагреве в присутствии кислорода происходит окисление сульфидов, и количество серы снижается почти в два раза. Обжигу подвергаются бедные концентраты, в которых содержится 8-25% меди. Богатые концентраты, содержащие 25-35% меди, плавят, не прибегая к обжигу.

Следующий этап пирометаллургического способа получения меди - это плавка на штейн. Если в качестве сырья используется кусковая медная руда с большим количеством серы, то плавку проводят в шахтных печах. А для порошкообразного флотационного концентрата применяют отражательные печи. Плавка происходит при температуре 1450 °С.

В горизонтальных конвертерах с боковым дутьём медный штейн продувается сжатым воздухом для того, чтобы произошли процессы окисления сульфидов и феррума. Далее образовавшиеся окислы переводят в шлак, а серу в оксид. В конвертере образуется черновая медь, которая содержит 98,4-99,4% меди, железо, серу, а также незначительное количество никеля, олова, серебра и золота.

Черновая медь подлежит огневому, а далее электролитическому рафинированию. Примеси удаляют с газами и переводят в шлак. В результате огневого рафинирования образуется медь с чистотой до 99,5%. А после электролитического рафинирования чистота составляет 99,95%.

2. Гидрометаллургический способ заключается в выщелачивании меди слабым раствором серной кислоты, а затем выделении металлической меди непосредственно из раствора. Такой способ применяется для переработки бедных руд и не допускает попутного извлечения драгоценных металлов вместе с медью.

Применение меди

Благодаря ценным качествам медь и медные сплавы используются в электротехнической и электромашиностроительной отрасли, в радиоэлектронике и приборостроении. Существуют сплавы меди с такими металлами, как цинк, олово, алюминий, никель, титан, серебро, золото. Реже применяются сплавы с неметаллами: фосфором, серой, кислородом. Выделяют две группы медных сплавов: латуни (сплавы с цинком) и бронзы (сплавы с другими элементами).

Медь обладает высокой экологичностью, что допускает её использование в строительстве жилых домов. К примеру, медная кровля за счёт антикоррозионных свойств, может прослужить больше ста лет без специального ухода и покраски.

Медь в сплавах с золотом используется в ювелирном деле. Такой сплав увеличивает прочность изделия, повышает стойкость к деформированию и истиранию.

Для соединений меди характерна высокая биологическая активность. В растениях медь принимает участие в синтезе хлорофилла. Поэтому её можно увидеть в составе минеральных удобрений. Недостаток меди в организме человека может вызвать ухудшение состава крови. Она есть в составе многих продуктов питания. К примеру, этот металл содержится в молоке. Однако важно помнить, что избыток соединений меди может вызвать отравление. Именно поэтому нельзя готовить пищу в медной посуде. Во время кипячения в пищу может попасть большое количество меди. Если же посуда внутри покрыта слоем олова, то опасности отравления нет.

В медицине медь используют, как антисептическое и вяжущее средство. Она является компонентом глазных капель от конъюнктивита и растворов от ожогов.

Довольно часто домашние слесари отдают предпочтение меди (удельный вес 9,0 г/см2), поскольку ее мягкость и пластичность позволяют добиваться точности и высокого качества при изготовлении всевозможных деталей и изделий.

Чистая (красная) медь – прекрасный материал для различных поделок. Она подходит для ковки (в том числе холодной), чеканки, по ней можно легко гравировать и из нее выпиливать. Ее существенный недостаток – относительная дороговизна, а достать какие-либо бросовые изделия или детали для переработки довольно трудно из-за прокатившейся по России (и не только) волны массовой скупки цветных металлов. При работе с медью необходимо учитывать несколько особенностей этого металла.

Обработка меди резанием затруднена из-за ее пластичности и вязкости. Если необходимо вырезать из медного листа фигуру определенной формы (особенно со сложным контуром или небольших размеров), то лучше воспользоваться дрелью, ножовкой по металлу или напильником. Для тонких листов подойдет лобзик. Зубило или ножницы по металлу сомнут лист и загнут края, восстановить их будет трудно.

При длительной ударной обработке (чеканке, ковке) медь может потерять пластичность и начать трескаться. Для восстановления пластичности необходимо обжечь деталь при температуре 200–300 °C, но не выше; при 400–600 °C металл станет хрупким. Для обжига небольших деталей в домашних условиях вполне подойдет духовка газовой плиты со средним огнем.

Следует учитывать, что первоначальный яркий блеск меди вскоре потускнеет, несмотря на полировку. На воздухе изделия из медных пластинок окисляются и приобретают темно-красный цвет. В таком состоянии медь очень устойчива к коррозии, а во влажном воздухе со временем покроется зеленоватым налетом – патиной. С помощью различных химических веществ можно придать меди синий, зеленый и даже черный цвет. При желании сохранить изделие ярко-красным необходимо покрыть его прозрачным (бесцветным) лаком.

Медь является великолепным проводником электрического тока, а медный провод широко используется в работах, связанных с электротехникой.

Широко распространена латунь – сплав меди с цинком золотисто-желтого цвета. Иногда в него добавляется еще и алюминий. Благодаря содержанию цинка латунь прочнее и меньше окисляется, но обладает не столь высокой пластичностью. Ее марки характеризуются различным процентным содержанием меди (например, Л68 – 68 %, Л70 – 70 % и т. д.).

Латунь, в отличие от бронзы, относится к разряду дешевых материалов. Наряду с мягкостью и пластичностью, латунь практически не подвержена коррозии. В слесарных работах на дому чаще всего используется листовая латунь и латунная проволока.

Для поделочных работ рекомендуется использовать сплавы с высоким содержанием меди. Латунь прочнее и тверже меди, ее можно использовать для ажурной чеканки, выпиливания, гравировки, но не для ковки или чеканки с высоким рельефом, потому что могут образоваться трещины. Чтобы этого не произошло при создании плоского рельефа или длительном хранении изделия, надо обжечь латунь при температуре 200–300 °C.

Бронза (сплав меди с другими металлами) – материал не из дешевых, поэтому используется она в основном в декоративных целях. Ее качества зависят от составляющих сплава. Так, алюминиевые бронзы отличаются высокой износоустойчивостью, оловянные – пластичностью, бериллиевые – прочностью. Бронзовые изделия тверже медных (некоторые специальные марки бронзы по прочности превосходят сталь), поддаются ковке и пригодны для литья. Однако бронза дороже и дефицитнее меди, не выпускается в виде тонких листов, поэтому работать с ней в домашних условиях удается редко, только если выплавлять ее самостоятельно.

Благодаря своим декоративным качествам медь (и ее сплавы – латунь, бронза) используется для изготовления предметов украшения, мебельной фурнитуры.

Из книги: Коршевер Н. Г. Работы по металлу

Основы > Электротехнические материалы > Проводниковые материалы

МЕДЬ
Чистая медь по электрической проводимости занимает следующее место после серебра, обладающего из всех известных проводников наивысшей проводимостью. Высокая проводимость и стойкость к атмосферной коррозии в сочетании с высокой пластичностью делают медь основным материалом для проводов.
На воздухе медные провода окисляются медленно, покрываясь тонким слоем окиси С u О, препятствующим дальнейшему окислению меди. Коррозию меди вызывают сернистый газ S0 2 , сероводород H 2 S, аммиак NH 3 , окись азота NО, пары азотной кислоты и некоторые другие реактивы.
Проводниковую медь получают из слитков путем гальванической очистки ее в электролитических ваннах. Примеси, даже в ничтожных количествах, резко снижают электропроводность меди (рис. 8-1), делая ее малопригодной для проводников тока, поэтому в качестве электротехнической меди применяются лишь две ее марки (М0 и M1) по ГОСТ 859-66, химический состав которых приведен в табл. 8-1.
В табл. 8-1 не указана бескислородная медь марки М00 (99,99% Си), свободная от содержания кислорода и окислов меди, отличающаяся от меди марок М0 и M1 меньшим количеством примесей и существенно более высокой пластичностью, позволяющей ее волочение в тончайшие проволоки. По проводимости медь М00 не отличается от меди М0 и M1. Медь повышенной чистоты широко используется в электровакуумной технике.
Примеси Bi и Р
b в больших количествах, чем указано в табл. 8-1, делают невозможным горячую прокатку меди. Сера не вызывает горячеломкость меди, но повышает ее хрупкость на холоде. Примеси в небольших количествах Ni, Ag, Zn и Sn не ухудшают технологических свойств, повышая механическую прочность и термическую стойкость меди.
Кислород как примесь в малых дозах, не затрудняя заметно прокатку, несколько повышает проводимость меди, так как находящиеся в меди другие примеси в результате окисления выводятся из твердого раствора, где они наиболее сильно влияют на снижение проводимости металла.
Повышенное содержание кислорода снижает проводимость и делает медь хрупкой в холодном состоянии, поэтому в электротехнических марках меди присутствие кислорода ограничивается (табл. 8-1). Медь, содержащая кислород, подвержена также водородной болезни. В восстановительной атмосфере закись меди восстанавливается до металла. Во время реакций, идущих с образованием водяных паров, в.меди появляются микротрещины.

Рис. 8-1. Влияние примесей на электрическую проводимость меди.

Таблица 8-1 Химический состав проводниковой меди (ГОСТ 859-66)

Почти все изделия из проводниковой меди изготовляются путем проката, пресования и волочения. Так, волочением могут быть изготовлены провода диаметром до 0,005 мм, ленты толщиной до 0,1 мм и медная фольга толщиной до 0,008 мм.
Проводниковая медь применяется как в отожженном после холодной обработки виде (мягкая медь марки ММ), так и без отжига (твердая медь марки МТ).
При холодной обработке давлением прочность меди в результате обжатия (наклепа) растет, а удлинение падает, однако длительные рабочие температуры наклепанной меди ограничены и лежат в пределах до 160-200 °С, после чего из-за процесса рекристаллизации происходят разупрочнение и резкое падение твердости наклепанной меди. Чем выше степень обжатия при холодной обработке, тем ниже допустимые рабочие температуры твердой меди.
При температурах термообработки выше 900 °С вследствие интенсивного роста зерна механические свойства меди резко ухудшаются. Физические и технологические свойства меди приведены в табл. 8-2.
Влияние температуры отжига на механические свойства и электрическую проводимость меди представлено на рис. 8-2.
Для электротехнических целей из меди изготовляют проволоку, ленту, шины как в мягком (отожженном) состоянии, так и в твердом.
Согласно ГОСТ 434-71 число твердости Бринелля твердых лент при испытании шариком диаметром 5 мм, нагрузке 2500 Н и выдержке 30 с.
В зависимости от рабочей температуры механические свойства меди представлены в табл.8-3.
В целях повышения предела ползучести и термической устойчивости медь легируют серебром в пределах 0,07-0,15%, а также магнием, кадмием, хромом, цирконием и другими элементами.
В настоящее время медь с присадкой серебра применяется для обмоток быстроходных и нагревостойких машин большей мощности, а медь, легированная различными элементами, используется в коллекторах и контактных кольцах сильно нагруженных машин.


Таблица 8-2 Физические и технологические свойства меди

Свойства

Состояние

Показатель

Температура плавления, °С

1083±0,1

Плотность, кг/м3

При 20 °С

8930

Температурный коэффициент линейного расширения,

В интервале 20-100 °С

Теплопроводность, Вт/(м °С)

375-380

Удельное электрическое сопротивление при +20 °С (мягкая проволока), мкОм м

Обусловленное ГОСТ 2112-71

0,01724

То же (твердая проволока)

То же

0,0180-0,0177

Температурный коэффициент сопротивления,

При 0-150 °С

0,00411

Температура горячей обработки, °С

Твердое

900-1050

Температура начала рекристаллизации, °С

Наклепанное

160-200

Травитель для полуфабрикатов, %

H 2 SO 4

Атмосфера при плавлении

Восстановительная

Температура литья, °С

1150-1200

Температура отжига, °С

500-700

Температура кипения, °С

2300-2590

Теплота плавления, Дж/кг

Теплота испарения, Дж/кг

5400

Объемная усадка, %

При кристаллизации

Отношение электрического сопротивления расплавленной меди к сопротивлению твердой меди

При плавлении и кристаллизации

2,07

Потенциал выхода электронов, В

4,07-2,61

Термо-э.д.с. относительно платины, мВ

0,15

Рис. 8-2. Влияние температуры отжига на свойства меди.

Таблица 8-3 Характер изменения механических свойств проводниковой меди в зависимости от температуры

Свойства

Температура, °С

Твердотянутая

Отожженная (650 °С, 1 / 2 ч)

Предел прочности при растяжении, МПа
Истинный предел прочности при растяжении, МПа
Удлинение, %
Сужение площади поперечного сечения, %
Модуль упругости статический, ГПа
Модуль упругости динамический, ГПа
Предел текучести, МПа
Предел вибрационной усталости, МПа
Предел ползучести, МПа

400
670
5,4
53,8
119
110
380
93
-

365
600
5,5
56,1
106
89
355
74
-

В большей части промышленных отраслей используется такой металл, как медь. Благодаря высокой электропроводности без этого материала не обходится ни одна область электротехники. Из нее образуются проводники, обладающими отличными эксплуатационными особенностями. Помимо этих особенностей медь обладает пластичностью и тугоплавкостью, устойчивостью к коррозии и агрессивным средам. И сегодня мы рассмотрим металл со всех сторон: укажем цену за 1 кг лома меди, поведаем о ее использовании и производстве.

Понятие и особенности

Медь представляет собой химический элемент, носящийся к первой группы периодической системы имени Менделеева. Этот пластичный металл имеет золотисто – розовый цвет и является одним из трех металлов с ярко выраженным окрашиванием. С давних времен активно используется человеком во многих областях промышленности.

Главной особенностью металла является его высокая электро- и теплопроводность. Если сравнивать с другими металлами, то проведение электрического тока через медь выше в 1,7 раз, чем у алюминия, и почти в 6 раз выше, чем у железа.

Медь имеет ряд отличительных особенностей перед остальными металлами:

  1. Пластичность . Медь представляет собой мягкий и пластичный металл. Если брать во внимание медную проволоку, она легко гнется, принимает любые положения и при этом не деформируется. Сам же металл достаточно немного надавить, чтобы проверить эту особенность.
  2. Устойчивость к коррозии . Этот фоточувствительный материал отличается высокой устойчивостью к возникновению коррозии. Если медь на длительный срок оставить во влажной среде, на ее поверхности начнет появляться зеленая пленка, которая и защищает металл от негативного влияния влаги.
  3. Реакция на повышение температуры . Отличить медь от других металлов можно путем ее нагревания. В процессе медь начнет терять свой цвет, а затем становиться темнее. В результате при нагреве металла он достигнет черного цвета.

Благодаря таким особенностям можно отличить данный материал от , и других металлов.

Видео ниже расскажет вам про полезные свойства меди:

Плюсы и минусы

Преимуществами данного металла являются:

  • Высокий показатель теплопроводности;
  • Устойчивость к влиянию коррозии;
  • Достаточно высокая прочность;
  • Высокая пластичность, которая сохраняется до температуры -269 градусов;
  • Хорошая электропроводность;
  • Возможность легирования с различными добавочными компонентами.

Про характеристики, физические и химические свойства вещества-металла меди и ее сплавов читайте ниже.

Свойства и характеристики

Медь, как малоактивный металл, не вступает во взаимодействие с водой, солями, щелочами, а также со слабой серной кислотой, но при этом подвержена растворению в концентрированной серной и азотной кислоте.

Физические свойства метала:

  • Температура плавления меди составляет 1084°C;
  • Температура кипения меди составляет 2560°C;
  • Плотность 8890 кг/м³;
  • Электрическая проводимость 58 МОм/м;
  • Теплопроводность 390 м*К.

Механические свойства:

  • Предел прочности на разрыв при деформированном состоянии составляет 350-450 МПа, при отожженном – 220-250 МПа;
  • Относительное сужение в деформированном состоянии 40-60%, в отожженном – 70-80%;
  • Относительное удлинение в деформированном состоянии составляет 5-6 δ ψ%, в отожженном – 45-50 δ ψ%;
  • Твердость составляет в деформированном состоянии 90-110 НВ, в отожженном – 35-55 НВ.

При температуре ниже 0°С этот материал обладает более высокой прочностью и пластичностью, чем при +20°С.

Структура и состав

Медь, имеющая высокий коэффициент электропроводности, отличается наименьшим содержанием примесей. Доля их в составе может приравниваться 0,1%. С целью увеличения прочности меди в нее добавляют различные примеси: сурьма, и прочее. В зависимости от ее состава и степени содержания чистой меди различают несколько ее марок.

Структурный тип меди может включать в себя также кристаллы серебра, кальция, алюминий, золота и других компонентов. Все они отличаются сравнительной мягкостью и пластичностью. Частичка самой меди имеет кубическую форму, атому которой расположены на вершинах F –ячейки. Каждая ячейка состоит из 4 атомов.

О том, где брать медь, смотрите в этом видеоролике:

Производство материалов

В природных условиях данный металл содержится в самородной меди и сульфидных рудах. Широкое распространение при производстве меди получили руды под названием «медный блеск» и «медный колчедан», которые содержат до 2% необходимого компонента.

Большую часть (до 90%) первичного металла благодаря пирометаллургическому способу, который включает в себя массу этапов: процесс обогащения, обжиг, плавка, обработка в конвертере и рафинирование. Оставшаяся часть получается гидрометаллургическим способом, который заключается в ее выщелачивании разведенной серной кислоты.

Области применения

в следующих областях:

  • Электротехническая промышленность , которая заключается, в первую очередь, в производстве электропроводов. Для этих целей медь должна быть максимально чистой, без посторонних примесей.
  • Изготовление филигранных изделий . Медная проволока в отожженном состоянии отличается высокой пластичностью и прочностью. Именно поэтому, она активно используется при производстве различных шнуров, орнаментов и прочих конструкций.
  • Переплавка катодной меди в проволоку . Самые разнообразные медные изделия переплавляются в слитки, которые идеально подходят для дальнейшей прокатки.

Медь активно используется в самых различных сферах промышленности. Она может входить в состав не только проволоки, но и оружия и даже бижутерии. Ее свойства и широкая сфера применения благоприятно повлияли на ее популярность.

Видео ниже расскажет о том, как медь может изменить свои свойства:

4. Влияние примесей и структуры меди на ее пластичность

Наличие в бескислородной меди примесей в количествах, регламентируемых ГОСТ 859-78, не оказывает заметного влияния на ее механические свойства при 20°С. Однако при высокотемпературных испытаниях и определенны условиях наблюдается несколько интервалов снижения пластичности, которые у спектрально чистой меди отсутствуют. Существует ряд гипотез, объясняющих причину снижения пластичности меди в определенном температурном интервале и при статических скоростях испытания образцов. Эти гипотезы условно можно разделить на две группы:

а) гипотезы, связывающие аномальное понижение пластичности с взаимодействием меда с селеном, теллуром, висмутом, свинцом, серой, кислородом, водородом;

б) гипотезы, объясняющие падение пластичности в определенных температурных интервалах структурными изменениями меди.

Гипотезы первой группы основаны на термодинамических расчетах, проверенных в работе . Расчеты показали, что интервал пониженной пластичности меда совпадает с температурой, при которой селен и теллур могут находиться между медными кристаллами в газообразном состоянии. Теллур и селен находятся в меди в тысячных и десятитысячных долях процента, однако тонкие прослойки газовой фазы этих элементов можно рассматривать как готовые трещины критического размера, которые под действием растягивающих усилий при испытаниях развиваются в микротрещины и вызывают хрупкость меди.

Свинец и висмут незначительно растворимы в твердой меди (0,001 %) и поэтому находятся в виде включений элементарного свинца или висмута. С повышением температуры эти элементы переходят в жидкое состояние и, располагаясь по границам зерен, нарушают связь между ними.

При температурах порядка 800°С происходит растворение малых количеств этих элементов в меди до исчезновения жидкой фазы и ликвидируется зона снижения пластичности. Однако в случае селена и теллура повышение пластичности при высоких температурах растворением этих элементов в меди объяснить нельзя.

Слитки из бескислородной меди, содержащие 2 · 10-3 % S, растрескиваются по кромкам при горячей прокатке, а менее 1 · 10-3 % S не имеют трещин. Окончание прокатки слитков проходит, как правило в районе, падений пластичности (500-700°С), что объясняет образование микротрещин уже на этой стадии. Висмут даже при содержании 3,8 - 10 -4 % понижает пластичность меди, а при 2,5 -10 -4 % на границах зерен найдены сегрегации, содержащие до 17 % Bi; тоже замечено и в случае с серой . Являясь поверхностно-активными элементами по отношению к меди, эти примеси уменьшают ее поверхностную энергию, что приводит к снижению межзеренного сцепления, а следовательно, к потере пластичности. Если поверхностная энергия чистой меди составляет около 0,135 мДж, то присутствие серы снижает ее до 7 мкДж и тем самым снижает когезивную прочность границ зерен. Существенную роль в возникновении красноломкости бескислородной меди играет отношение между содержанием примесей и их растворимостью в твердой меди. Чем выше это отношение (которое наиболее велико в основном для кислорода, висмута, серы, свинца), тем больше тенденция к образованию включений, которые, сегрегируя по границам зерен и коагулируя при высокотемпературной обработке, образуют дефекты.

В случае деформированной меди присутствие небольших количеств кислорода способствует повышению равномерного и уменьшению локального сужения шейки медной проволоки до 55 -65 % (в зависимости от степени деформации и содержания кислорода). В то же время проявление очень низкой пластичности кислородсодержащей меди при комнатной температуре и высокотемпературных испытаниях (ψ= = 20 %) дало возможность предположить }