Оптимизация теория. Оптимизация в центре теории экономики. Сущность методов исследования операций

Отказ от доминирующего пока определения

Экономическая теория - наука о том, какие из редких производительных ресурсов люди и общество с течением времени, с помощью денег или без их участия, избирают для производства различных товаров и распределения их в целях потребления в настоящем и будущем между различными людьми и группами общества.

В пользу краткого

ЭТ – наука об оптимизации экономики (хозяйствования) на всех уровнях вплоть до глобального.

Связан с возможностями понятия оптимизация

ОПТИМИЗАЦИЯ (одна из формулировок) - определение значений экономических показателей, при которых достигается оптимум, то есть наилучшее состояние системы. Чаще всего оптимуму соответствует достижение наивысшего результата при данных затратах ресурсов или достижение заданного результата при минимальных ресурсных затратах. http://slovari.yandex.ru/dict/economic

Или Оптимизация (от лат. optimum - наилучшее) - процесс нахождения экстремума (глобального максимума или минимума) определённой функции или выбора наилучшего (оптимального) варианта из множества возможных. Наиболее надёжным способом нахождения наилучшего варианта является сравнительная оценка всех возможных вариантов (альтернатив).
Если число альтернатив велико, при поиске наилучшей обычно используют методы математического программирования. Применить методы можно, если есть строгая постановка задачи: задан набор переменных, установлена область их возможного изменения (заданы ограничения) и определён вид целевой функции (функции, экстремум которой нужно найти) от этих переменных. Последняя представляет собой количественную меру (критерий) оценки степени достижения поставленной цели. В динамических задачах, когда ограничения, наложенные на переменные, зависят от времени, для нахождения наилучшего варианта действий используют методы оптимального управления и динамического программирования.

Чтобы среди большого числа рациональных вариантов найти оптимальный, нужна информация о предпочтительности различных сочетаний значений показателей, характеризующих варианты. При отсутствии этой информации наилучший вариант из числа рациональных выбирает руководитель, ответственный за принятие решения…

Введение понятия оптимизация в определение экономической теории уменьшает шансы общего трепа в этой науке.

Экономическая теория как наука об оптимизации экономики требует

Оптимизации понятийного аппарата этой теории;
- оптимизации методов экономических исследований;
- оптимизации рассмотрения и определения каждого понятия;
- оптимизации экономических решений на всех уровнях хозяйственной жизни;
- использование критериев оптимальности при оценке любых экономических явлений.

Цели экономического образования:
формирование основ экономического оптимизационного мышления;
выработка функциональной экономической грамотности и способностей к оптимизации саморазвития;
формирование практических навыков принятия оптимальных решений в различных экономических ситуациях;

Задачи экономического образования:
формировать знания, умения, навыки, необходимые для оптимизаций в экономической жизни;
развивать культуру экономического оптимизационного мышления, учить пользоваться экономическим оптимизационным инструментарием.

Классика политэкономии критерием оптимальности признает личную выгоду.
Неоклассика и близкие ей течения – тоже не против экономического эгоизма.

Экономическая теория с акцентом на оптимизацию допускает личную выгоду как частный (хотя и распространенный случай) экономических решений на всех уровнях.

Вместе с тем такая ЭТ допускает на всех уровнях и оптимальность коллективной выгоды, преимущественной выгоды большинства (тем более всех) участников любого уровня экономической жизни: семейного (где 2 и более членов семьи) , местного, регионального, государственного, межгосударственного, глобального…

Многообразная выгода (частная и общая) – как критерий оптимальности – характерна и живой природе (http://ddarwin.narod.ru/) , она включает и выгоды от самого выживания любой системы.

Доминирующая пока экономическая теория (остро-конкурентная, «рыночная») оправдывает только частные выгоды, нередко стыдливо закрывая глаза на усилия стран и народов по достижению общих выгод (иногда неизбежно в ущерб частным) во имя существования экономических систем разного уровня. Начиная с небольших населенных пунктов и отдельных семей (например, фермеров).

ЭТ как наука об оптимизации экономики (хозяйствования) на всех уровнях вплоть до глобального позволяет больше исследовать гармонизацию личных и общих интересов для выживания всех субъектов хозяйствования.

Различными аспектами оптимизации хозяйствования социальные группы занимались с первобытных времен. Процессы оптимизации усилились в последние тысячелетия при формировании государств, возникновении крупных полиэтносов в Китае и Индии, Египте и Шумере, на просторах Скифии и в других регионах. Без различных форм оптимизации (того или иного согласования интересов, нередко и насильственного) экономическая жизнь невозможна.

Оптимальность связана с эффективностью и эффективность с оптимальностью. Эта связь проходит через все базовые понятия даже доминирующей пока ЭТ.

Потребности и экономические блага, полезность.
Экономические ресурсы, их виды, ограниченность ресурсов (и их оптимальное использование).
Экономический выбор. Альтернативные издержки. Принцип возрастания экономических издержек. Кривая производственных возможностей.
Понятие эффективности. Критерий эффективности и оптимальности по Парето. Эффективность использования ресурсов и эффективность распределения.
Позитивная и нормативная теория. Экономическая политика. Экономические системы.
Рыночная система. Рынок. Конкуренция.
Спрос и цена. Функция и кривая спроса. Факторы спроса. Закон спроса. Выигрыш потребителя. Индивидуальный и рыночный спрос.
Предложение и цена. Функция и кривая предложения. Факторы предложения. Закон предложения. Выигрыш производителя.
Рыночное равновесие спроса и предложения. Равновесная цена. Дефицит и излишки.
Влияние потоварных налогов и дотаций, распределение налогового бремени.
Эластичность спроса по цене и ее свойства. Дуговая эластичность.
Перекрестная эластичность. Эластичность спроса по доходу. Эластичность предложения по цене.
Предпосылки анализа выбора потребителя. Полезность. Предельная полезность.
Равновесие потребителя в кардиналистской теории.
Предпочтения потребителей. Кривые безразличия.
Бюджетное ограничение. Положение равновесия потребителя.
Изменение дохода потребителя и цен благ. Эффект замещения. Эффект дохода.
Блага низшего порядка. Взаимозаменяемость и взаимодополняемость благ.
Производство. Факторы производства. Доходы факторов.
Понятие производственной функции.
Совокупный, средний и предельный продукт.
Закон убывающей предельной производительности
Изокванта и ее свойства. Изокоста. Равновесие производителя
Фирма: понятие, типы.
Издержки фирмы. Постоянные и переменные издержки.
Общие издержки. Средние издержки.
Предельные издержки.
Бухгалтерская и экономическая прибыль
Общий, средний и предельный доход фирмы.
Различные типы рыночных структур.
Совершенная конкуренция
Равновесие конкурентной фирмы в краткосрочном периоде
Равновесие конкурентной фирмы в долгосрочном периоде
Чистая монополия. Определение цены и объема производства в условиях монополии. Показатели рыночной власти. Экономические последствия монополии.
Монополистическая конкуренция. Установление цены и объема производства в условиях монополистической конкуренции. Неценовая конкуренция. Диверсификация продукта.
Олигополоия. Определение цены и объема производства в условиях олигополии.
Рынки факторов производства: труда, капитала, земли. Формирование спроса на факторы производства, его производный характер.
Рынок труда. Спрос и предложение на рынке труда.
Монопсония и двусторонняя монополия на рынке труда. Роль профсоюзов. Эффективная заработная плата. Теория человеческого капитала. Инвестирования в образование.
Рынок капитала. Физический и денежный капитал. Капитал и ссудный процент. Спрос и предложение заемных средств.
Процентная ставка в условиях совершенной конкуренции. Реальная и номинальная процентная ставка. Равновесная ставка процента.
Инвестиционные решения фирм. Принцип дисконтирования. Оценка эффективности инвестиций.
Частичное и общее равновесие. Общее равновесие и эффективность распределения.
Критерии эффективности в рыночной экономике.
Критерий эффективности и оптимум по Парето (и здесь).
Эффективность и социальная справедливость, социальный и экономический оптимум. Принцип компенсации (принцип Калдора-Хикса).
«Провалы рынка». Система социального обеспечения.
Неравенство, бедность и дискриминация. Распределения дохода. Кривая Лоренца. Коэффициент Джини.
Общественные товары. Спрос и предложение общественных благ. Сравнительный анализ общественных и частных товаров.
Частные и социальные издержки. Частная (внутренняя) и социальная (внешняя) выгода. Проблема рынка общественных товаров и регулирующая роль государства.
Предложение общественных благ через политические институты. Общественный выбор в условиях прямой и представительной демократии. Решения, принимаемые при согласовании. Правила большинства. Лоббизм. Искатели политической ренты.
Внешние эффекты: положительные и отрицательные внешние эффекты.
Проблема интернализации внешних эффектов. Политика государства: корректирующие налоги и субсидии.
Теория прав собственности. Теорема Коуза. Трансакционные издержки. Рынок прав собственности.

Доказывать современным экономистам перспективность оптимальности как главной проблемы современной экономической теории, думается, нет необходимости. Об оптимизации экономики на всех уровнях думает практически любой специалист.

Современная ЭТ должна просто обосновать эти усилия специалистов.

Параметров при заданной структуре объекта, то она называется параметрической оптимизацией . Задача выбора оптимальной структуры является структурной оптимизацией .

Стандартная математическая задача оптимизации формулируется таким образом. Среди элементов χ, образующих множества Χ, найти такой элемент χ * , который доставляет минимальное значение f(χ *) заданной функции f(χ). Для того, чтобы корректно поставить задачу оптимизации необходимо задать:

Тогда решить задачу означает одно из:

Если минимизируемая функция не является выпуклой , то часто ограничиваются поиском локальных минимумов и максимумов: точек таких, что всюду в некоторой их окрестности для минимума и для максимума.

Если допустимое множество , то такая задача называется задачей безусловной оптимизации , в противном случае - задачей условной оптимизации .

Классификация методов оптимизации

Общая запись задач оптимизации задаёт большое разнообразие их классов. От класса задачи зависит подбор метода (эффективность её решения). Классификацию задач определяют: целевая функция и допустимая область (задаётся системой неравенств и равенств или более сложным алгоритмом).

Методы оптимизации классифицируют в соответствии с задачами оптимизации:

  • Локальные методы: сходятся к какому-нибудь локальному экстремуму целевой функции. В случае унимодальной целевой функции, этот экстремум единственен, и будет глобальным максимумом/минимумом.
  • Глобальные методы: имеют дело с многоэкстремальными целевыми функциями. При глобальном поиске основной задачей является выявление тенденций глобального поведения целевой функции.

Существующие в настоящее время методы поиска можно разбить на три большие группы:

  1. детерминированные;
  2. случайные (стохастические);
  3. комбинированные.

По критерию размерности допустимого множества, методы оптимизации делят на методы одномерной оптимизации и методы многомерной оптимизации .

По виду целевой функции и допустимого множества, задачи оптимизации и методы их решения можно разделить на следующие классы:

По требованиям к гладкости и наличию у целевой функции частных производных, их также можно разделить на:

  • прямые методы, требующие только вычислений целевой функции в точках приближений;
  • методы первого порядка : требуют вычисления первых частных производных функции;
  • методы второго порядка: требуют вычисления вторых частных производных, то есть гессиана целевой функции.

Помимо того, оптимизационные методы делятся на следующие группы:

  • аналитические методы (например, метод множителей Лагранжа и условия Каруша-Куна-Таккера);
  • графические методы.

В зависимости от природы множества X задачи математического программирования классифицируются как:

  • задачи дискретного программирования (или комбинаторной оптимизации) - если X конечно или счётно ;
  • задачи целочисленного программирования - если X является подмножеством множества целых чисел;
  • задачей нелинейного программирования, если ограничения или целевая функция содержат нелинейные функции и X является подмножеством конечномерного векторного пространства .
  • Если же все ограничения и целевая функция содержат лишь линейные функции, то это - задача линейного программирования.

Кроме того, разделами математического программирования являются параметрическое программирование , динамическое программирование и стохастическое программирование .

Математическое программирование используется при решении оптимизационных задач исследования операций .

Способ нахождения экстремума полностью определяется классом задачи. Но перед тем, как получить математическую модель, нужно выполнить 4 этапа моделирования:

  • Определение границ системы оптимизации
    • Отбрасываем те связи объекта оптимизации с внешним миром, которые не могут сильно повлиять на результат оптимизации, а, точнее, те, без которых решение упрощается
  • Выбор управляемых переменных
    • «Замораживаем» значения некоторых переменных (неуправляемые переменные). Другие оставляем принимать любые значения из области допустимых решений (управляемые переменные)
  • Определение ограничений на управляемые переменные
    • … (равенства и/или неравенства)
  • Выбор числового критерия оптимизации (например, показателя эффективности)
    • Создаём целевую функцию

История

Канторовичем совместно с М. К. Гавуриным в 1949 году разработан метод потенциалов , который применяется при решении транспортных задач . В последующих работах Канторовича, Немчинова , В. В. Новожилова , А. Л. Лурье , А. Брудно , Аганбегяна , Д. Б. Юдина, Е. Г. Гольштейна и других математиков и экономистов получили дальнейшее развитие как математическая теория линейного и нелинейного программирования , так и приложение её методов к исследованию различных экономических проблем.

Методам линейного программирования посвящено много работ зарубежных учёных. В 1941 году Ф. Л. Хитчкок поставил транспортную задачу . Основной метод решения задач линейного программирования - симплекс-метод - был опубликован в 1949 году Данцигом. Дальнейшее развитие методы линейного и нелинейного программирования получили в работах Куна (англ. ), А. Таккера (англ. ), Гасса (Saul. I. Gass), Чарнеса (Charnes A.), Била (Beale E. M.) и др.

Одновременно с развитием линейного программирования большое внимание уделялось задачам нелинейного программирования, в которых либо целевая функция , либо ограничения, либо то и другое нелинейны. В 1951 году была опубликована работа Куна и Таккера, в которой приведены необходимые и достаточные условия оптимальности для решения задач нелинейного программирования. Эта работа послужила основой для последующих исследований в этой области.

Начиная с 1955 году опубликовано много работ, посвященных квадратическому программированию (работы Била, Баранкина и Дорфмана (Dorfman R.), Франка (Frank M.) и Вольфа (Wolfe P.), Марковица и др.). В работах Денниса (Dennis J. B.), Розена (Rosen J. B.) и Зонтендейка (Zontendijk G.) разработаны градиентные методы решения задач нелинейного программирования.

В настоящее время для эффективного применения методов математического программирования и решения задач на компьютерах разработаны алгебраические языки моделирования, представителями которыми являются AMPL и LINGO.

См. также

Примечания

Литература

  • Абакаров А. Ш., Сушков Ю. А. Статистическое исследование одного алгоритма глобальной оптимизации . - Труды ФОРА, 2004.
  • Акулич И. Л. Математическое программирование в примерах и задачах: Учеб. пособие для студентов эконом. пец. вузов. - М .: Высшая школа, 1986.
  • Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. Пер. с англ. - М .: Мир, 1985.
  • Гирсанов И. В. Лекции по математической теории экстремальных задач. - М .; Ижевск : НИЦ «Регулярная и хаотическая динамика», 2003. - 118 с. - ISBN 5-93972-272-5
  • Жиглявский А. А., Жилинкас А. Г. Методы поиска глобального экстремума. - М .: Наука, Физматлит, 1991.
  • Карманов В. Г. Математическое программирование. - Изд-во физ.-мат. литературы, 2004.
  • Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. - М .: Наука, 1970. - С. 575-576.
  • Коршунов Ю. М., Коршунов Ю. М. Математические основы кибернетики. - М .: Энергоатомиздат, 1972.
  • Максимов Ю. А., Филлиповская Е. А. Алгоритмы решения задач нелинейного программирования. - М .: МИФИ, 1982.
  • Максимов Ю. А. Алгоритмы линейного и дискретного программирования. - М .: МИФИ, 1980.
  • Плотников А. Д. Математическое программирование = экспресс-курс. - 2006. - С. 171. - ISBN 985-475-186-4
  • Растригин Л. А. Статистические методы поиска. - М ., 1968.
  • Хемди А. Таха. Введение в исследование операций = Operations Research: An Introduction. - 8 изд. - М .: Вильямс, 2007. - С. 912. - ISBN 0-13-032374-8
  • Кини Р. Л., Райфа Х. Принятие решений при многих критериях: предпочтения и замещения. - М .: Радио и связь, 1981. - 560 с.
  • С.И.Зуховицкий , Л.И.Авдеева. Линейное и выпуклое программирование. - 2-е изд., перераб. и доп.. - М .: Издательство «Наука», 1967.

Ссылки

  • Б.П. Поляк . История математического программирования в СССР: анализ феномена // Труды 14-й Байкальской школы-семинара «Методы оптимизации и их приложения» . - 2008. - Т. 1. - С. 2-20.

Wikimedia Foundation . 2010 .

1. Задачи математического программирования

где - скалярная функция на конечномерном множестве:

  • - задачи линейного программирования (ЛП): - линейная, допустимое множество Х - выпукло, задается линейными уравнениями и неравенствами. (Ядро ЛП - сиплекс-метод; теория двойственности, функция Лагранжа, существование седловой точки)
  • - задачи целочисленного ЛП (оптимальные решения Z);
  • - задачи квадратичного программирования;
  • - задачи дискретного программирования (допустимое множество - конечно);
  • - задачи выпуклого программирования (Х - выпукло, - выпуклая; теорема Куна-Таккера - аналог теории двойственности в ЛП);
  • - задачи невыпуклого программирования.
  • 2. Задачи многокритериальной оптимизации (критерий оптимальности состоит из нескольких скалярных функций, которые нужно максимизировать или минимизировать).
  • 3. Задачи вариационного исчисления.

Задача ВИ: найти, Х - произвольное множество, например, - функционал, аргументом которого чаще всего являются функции (т.е. - подмножество функционального пространства). Для ВИ характерно то, что множество Х - чаще всего является пространством непрерывно дифференцируемых функций.

4. Задачи оптимального управления.

Классический пример задачи ОУ - задача о полете ракеты.

Процесс движения ракеты задается дифференциальным уравнением, начальными условиями, .

Для задачи ОУ характерны разные типы переменных: фазовые (положение в пространстве) и параметры управления (- множество допустимых управлений, которое обычно является множеством кусочно-непрерывных функций).

Кроме того, обычно, .

Требуется так выбрать управление, чтобы минимизировать определенный функционал (расход топлива) минимизировать, при этом попасть в определенную точку пространства.

Постановка классической задачи оптимизации

Целевая функция, значение которой характеризуют степень достижения цели (во имя которой поставлена или решается задача);

Х - множество допустимых решений, среди элементов которого осуществляется поиск; - n-мерное евклидово пространство.

Определение 1. Точка называется точкой локального минимума [максимума] функции на множестве Х, если существует окрестность точки такая, что справедливо.

Иначе говоря, условный максимум (минимум) в точке - это наибольшее (наименьшее) значение функции по отношению не ко всем точкам из некоторой окрестности точки, а только к тем из них, которые принадлежат множеству X.

Следует заметить, что сама функция может не иметь экстремума, но иметь условный экстремум.

Определение 2. Точка называется точкой глобального (абсолютного) минимума [максимума] функции на множестве Х, если функция достигает в этой точке своего наименьшего [наибольшего] значения, т.е. .

Замечания.

  • 1) Задача сводится к задаче поиска минимума следующим образом: .
  • 2) Если, то задача (1) называется задача безусловной оптимизации. Если Х задается условиями (ограничениями), накладываемыми на x, то задача (1) называется задачей условной оптимизации.
  • 3) Обозначим - множество точек глобального минимума функции на множестве Х.

Тогда решить задачу (1) означает:

Найти множество и значение целевой функции в точках этого множества;

  • - если, то найти;
  • - убедиться, что функция не ограничена снизу на Х;
  • - убедиться в том, что.

Определение 1. Градиентом непрерывно дифференцируемой функции в точке x называется столбец-вектор, элементами которого являются частные производные первого порядка, вычисленные в данной точке:

Определение 2. Матрицей Гессе дважды непрерывно дифференцируемой в точке x функции называется матрица частных производных второго порядка, вычисленных в данной точке:


Матрица Гессе является симметрической матрицей размера.

Градиент функции направлен по нормали к поверхности уровня (т.е. перпендикулярно к касательной плоскости, проведенной в точке х) в сторону наибольшего возрастания функции в данной точке.

Вектор антиградиента - вектор, равный по модулю вектору градиента, но противоположный по направлению.

Вектор антиградиента указывает направление наибольшего убывания функции в данной точке.

С помощью градиента и матрицы Гессе, используя разложение по формуле Тейлора, приращение функции в точке x может быть записано в виде:

Евклидова норма вектора

Сумма всех слагаемых разложения, имеющих порядок выше второго относительно приращения аргумента.

Выражение называется квадратичной формой от переменных.

Следовательно, в стационарной точке (в которой градиент функции равен нулю) знак приращения функции, совпадает со знаком выражения.

Определение 3. Квадратичная форма (а также соответствующая матрица Гессе) называется:

положительно определенной (>0), если для любого ненулевого выполняется неравенство;

отрицательно определенной (), если для любого ненулевого выполняется неравенство;

положительно полуопределенной (), если для любого выполняется неравенство 0 и имеется отличный от нуля вектор, для которого =0;

отрицательно полуопределенной (), если для любого выполняется неравенство 0 и имеется отличный от нуля вектор, для которого;

неопределенной (), если существуют такие векторы, что выполняются неравенства, ;

тождественно равной нулю (), если для любого выполняется.

Критерий Сильвестра. 1) Для того чтобы квадратичная форма с матрицей являлась положительно определенной необходимо и достаточно, чтобы все угловые миноры матрицы были положительны.

2) Для того чтобы квадратичная форма с матрицей являлась отрицательно определенной необходимо и достаточно, чтобы все угловые миноры матрицы нечетного порядка были отрицательны, а угловые миноры четного порядка - положительны.

Теорема (Достаточные условия безусловного экстремума) Если у дважды непрерывно дифференцируемой в стационарной точке функции ее второй дифференциал в этой точке является положительно определенной квадратичной формой, то точка является точкой строгого минимума, а если отрицательно определенной, то - точкой строгого максимума, если же - неопределенной формой, то экстремума в рассматриваемой точке нет.

Пример:

положительно определена при любом Х, поэтому точка (2, 4, 6) является точкой локального минимума, а так как это единственная стационарная точка, то она же является и точкой глобального минимума.

Таким образом, для решения задачи оптимизации классическим методом необходимо решить систему уравнений, что невозможно сделать аналитически за исключением очень узкого класса таких систем (например, система линейных уравнений невысокого порядка). Затем придется еще устанавливать определенность гессиана, что тоже является совсем нетривиальной задачей в случае больших размерностей. Все это приводит к необходимости разрабатывать итерационные процедуры решения задач оптимизации.

ВВЕДЕНИЕ

ВВЕДЕНИЕ В МЕТОДЫ ОПТИМИЗАЦИИ

2. ОСНОВЫ ТЕОРИИ ОПТИМИЗАЦИИ
2.1 Параметры плана
2.2 Целевая функция (план)

3. ФУНКЦИЯ ОДНОЙ ПЕРЕМЕННОЙ
3.1 Определение функции одной переменной и ее свойства
3.2 Исследование функции в экономике. Нахождение максимума прибыли
3.3 Определение глобального экстремума
3.4 Выпуклость, вогнутость функции
3.5 Критерий оптимальности
3.6 Идентификация оптимумов

4. ОДНОМЕРНАЯ ОПТИМИЗАЦИЯ
4.1 Методы исключения интервалов
4.1.1 Метод сканирования
4.1.2 Метод деления отрезка пополам
4.1.3 Метод золотого сечения
4.1.4 Сравнительная характеристика методов исключения интервалов
4.2 Полиномиальная апроксимация и методы точечного оценивания
4.2.1 Метод параболической апроксимации
4.2.2 Метод Пуэлла
4.3 Сравнение методов одномерного поиска

5. ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ
5.1 Функции многих переменных, их обозначение и область определения
5.2 Некоторые многомерные функции, используемые в экономике
5.3 Частные производные функции многих переменных
5.4 Экономический смысл частных производных
5.5 Частные производные высших порядков
5.6 Свойства функции нескольких переменных
5.7 Производная по направлению. Градиент. Линии уровня функции
5.8 Экстремум функции многих переменных

6. МНОГОМЕРНАЯ БЕЗУСЛОВНАЯ ГРАДИЕНТНАЯ ОПТИМИЗАЦИЯ
6.1 Концепция методов
6.2 Метод градиентного спуска
6.3 Метод наискорейшего спуска

7. КРИТЕРИИ ОПТИМАЛЬНОСТИ В ЗАДАЧАХ С ОГРАНИЧЕНИЯМИ
7.1 Задачи с ограничениями в виде равенств
7.2 Множители Лагранжа
7.3 Экономическая интерпретация множителей Лагранжа
7.4 Условия Куна-Таккера
7.4.1 Условия Куна-Таккера и задача Куна-Таккера
7.5 Теоремы Куна-Таккера
7.6 Условия существования седловой точки

8. МОДЕЛИ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ
8.1 Предмет динамического программирования
8.2 Постановка задачи динамического программирования
8.3 Принцып оптимальности и математическое описание динамического процесса управления
8.4 Общая схема применения метода динамического программирования
8.5 Двумерная модель распределения ресурсов
8.6 Дискретная динамическая модель оптимального распределения ресурсов
8.7 Выбор оптимальной стратегии обновления оборудования
8.8 выбор оптимального маршрута перевозки грузов
8.9 Построение оптимальной последовательности операций в коммерческой деятельности



ПРАВИЛА ВЫПОЛНЕНИЯ И ОФОРМЛЕНИЯ РАСЧЕТНО-ГРАФИЧЕСКОГО ЗАДАНИЯ

РАСЧЕТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ 1

РАСЧЕТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ 2

РАСЧЕТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ 3

ЛИТЕРАТУРА


ВВЕДЕНИЕ

Математизация различных областей знаний в настоящее время не является чем-то новым. Широкое внедрение математических методов в самые разнообразные сферы деятельности сегодня уже никого не удивляет. Это не только технические и экономические науки, где эти методы давно приносят свои плоды, но и развивающиеся сейчас разнообразные прикладные науки управления: менеджмент, принятие управляющих решений, социально-экономическое прогнозирование и т.д.

Прикладные науки развиваются своим путем, используя существующий математический аппарат для решения возникающих проблем, и даже своими потребностями стимулируют развитие некоторых разделов математики.

Настоящее пособие предназначено для студентов экономических специальностей, изучающих методы оптимизации. Поскольку для успешного усвоения материала по данному курсу необходим некоторый минимум знаний вопросов высшей математики, то пособие освещает эти моменты. Материал сопровождается соответствующими экономическими приложениями. Там, где приложения в экономике представляют самостоятельный интерес, они выделены в специальные разделы.

Учебное пособие не заменяет существующих учебных пособий академического плана, которые посвящены математическим аспектам вычислительных методов. Основная задача – знакомство с вычислительными методами как инструментом решения задач, получение ясного представления о логической структуре излагаемых методов, а также об их сравнительных преимуществах и недостатках.

При работе с пособием студент сначала знакомится с теоретическим материалом, затем изучает практическую часть, которая располагается непосредственно после теоретической части в каждом разделе. Каждая глава содержит контрольные вопросы, по которым студент может осуществить самоконтроль. После этого студент переходит к выполнению контрольной работы, предусмотренной программой. Затем контрольная работа направляется на рецензирование. В случае обнаружения ошибок рецензентом, выявления пробелов в знаниях рекомендуется еще раз вернуться к соответствующим разделам и проработать материал повторно, до полного усвоения.

Учебно-практическое пособие для системы дистанционного образования по дисциплине «Методы оптимизации и теория управления» предназначено для самостоятельной работы студента при нестационарной форме контроля знаний.

В рамках дисциплины выполняются три расчетно-графических задания студентами при пятилетнем курсе обучения, студенты, обучающиеся 3,5 года, выполняют два расчетно-графических задания – второе и третье. Решение аналогичных задач рассмотрено в теоретической и практической частях пособия.

После изучения курса студенты сдают зачет. Вопросы к зачету составляются на основе контрольных вопросов, указанных в конце каждого раздела пособия.

Глава 1. ВВЕДЕНИЕ В МЕТОДЫ ОПТИМИЗАЦИИ

Термин «оптимизация» имеет очень широкое употребление, а потому может зависеть от контекста. Оптимум (от лат. optimum – наилучшее) - совокупность наиболее благоприятствующих условий; наилучший вариант решения задачи или путь достижения цели при данных условиях и ресурсах. Экономический оптимум в широком смысле – наиболее эффективное функционирование производства, в узком – наилучшее использование материальных ресурсов, при котором достигается возможный максимальный эффект производства или возможный минимум затрат.

Оптимизация – это процесс выбора наилучшего варианта или процесс приведения системы в наилучшее (оптимальное) состояние, который состоит в нахождении всех максимизирующих или минимизирующих элементов или седловых точек. Оптимизация лежит в основе экономического анализа. В пассивных экономических моделях (таких, как изучающие общее равновесие) нас интересует оптимальное поведение лица, принимающего решение. В активных моделях (таких, как модели эффективного роста) мы сами заинтересованы в получении оптимума. В последние годы появилась тенденция к переходу от моделей типа «затраты – выпуск» к моделям анализа производственных процессов, от простейших моделей роста к моделям, изучающим траектории оптимального и эффективного роста.

Методы оптимизации – методы поиска экстремума функции (в практических задачах – критериев оптимальности) при наличии ограничений или без ограничений очень широко используются на практике. Это, прежде всего оптимальное проектирование (выбор наилучших номинальных технологических режимов, элементов конструкций, структуры технологических цепочек, условий экономической деятельности, повышение доходности и т.д.), оптимальное управление построением нематематических моделей объектов управления (минимизации невязок различной структуры модели и реального объекта) и многие другие аспекты решения экономических и социальных проблем (например, управление запасами, трудовыми ресурсами, транспортными потоками и т.д.).

Методы оптимизации являются разделом математического моделирования.

Эти темы охватывают широкий спектр различных задач математического моделирования, возникающих при исследовании реальных объектов промышленного производства, экономических, финансовых и других проблем.

Модель – это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте–оригинале.

Для того чтобы использовать математические результаты и численные методы теории оптимизации для решения конкретных задач, необходимо:

· установить границы подлежащей оптимизации системы;

· определить количественный критерий, на основе которого можно произвести анализ вариантов с целью выявления «наилучшего»;

· осуществить выбор внутрисистемных переменных, которые используются для определения характеристик и идентификации вариантов;

· построить модель, отражающую взаимосвязи между переменными.

Эта последовательность действий составляет содержание процесса постановки задачи оптимизации .

Рассмотрим некоторые встречающиеся в практической деятельности задачи математического моделирования в содержательной, а не в формальной математической трактовке.

Задачи оптимального распределения ресурсов. В общем ви­де эти задачи могут быть описаны следующим образом. Имеется некоторое количество ресурсов, под которыми можно понимать денежные средства, материальные ресурсы (например, сырье, по­луфабрикаты, трудовые ресурсы, различные виды оборудования и т.д.). Эти ресурсы необходимо распределить между различны­ми объектами их использования по отдельным промежуткам вре­мени или по различным объектам так, чтобы получить макси­мальную суммарную эффективность от выбранного способа распределения. Показателем эффективности может служить, на­пример, прибыль, товарная продукция, фондоотдача (задачи мак­симизации критерия оптимальности) или суммарные затраты, се­бестоимость, время выполнения данного объема работ и т.п. (задачи минимизации критерия оптимальности).

Имеется начальное количество средств Р 0 , которое необходи­мо распределить в течение п лет между S предприятиями. Сред­ства и ki (k = 1,..., n; i = 1,..., S) , выделенные в k-м году i-му пред­приятию, приносят доход в размере f ki (u ki) и к концу года возвращаются в количестве j ki (u ki) . В последующем распределе­нии доход может либо участвовать (частично или полностью), ли­бо не участвовать.

Требуется определить такой способ распределения ресурсов (количество средств, выделяемых каждому предприятию в каж­дом плановом году), чтобы суммарный доход от S предприятий за п лет был максимальным. Следовательно, в качестве показателя эффективности процесса распределения ресурсов за п лет прини­мается суммарный доход, полученный от S предприятий:

Количество ресурсов в начале k-го года будем характеризовать величиной P n 1 (параметр состояния). Управление на k-том шаге состоит в выборе переменных u k 1 , u k 2 , …, u ks , обозначающих ресурсы, выделяемые в k-том году i-му предприятию.

Если предположить, что доход в дальнейшем распределении не участвует, то уравнение состояния процесса имеет вид

Если же некоторая часть дохода участвует в дальнейшем рас­пределении в каком-нибудь году, то к правой части последнего равенства прибавляется соответствующая величина.

Требуется определить п s неотрицательных переменных и ki , удовлетворяющих условиям (2) и максимизирующих функ­цию (1).

Оптимальное управление запасами. Класс задач, в которых рассматривается оптимальное управление запасами, является од­ним из наиболее сложных. Это обусловлено тем, что в задачах управления запасами процесс, естественно, разворачивается во времени, причем управление заключается в том, что решение на данном промежутке времени принимается с учетом того состоя­ния, к которому пришла система за предшествующие периоды. Кроме того, эти задачи связаны, как правило, с дискретным харак­тером переменных и, следовательно, решаются довольно сложно.

Проблема управления запасами является одной из важнейших областей практического приложения экономико-математических методов, в том числе методов математического программирова­ния.

При формулировке задач управления запасами используют следующие понятия.

Запасы - это любые денежные или материальные ценности, которые периодически пополняются (производятся, доставляют­ся и т. д.) и некоторое время сохраняются с целью расходования их в последующие промежутки времени. Уровень запасов в лю­бой момент времени определяется начальным уровнем запасов плюс пополнение и минус расход за промежуток времени от на­чального момента до текущего.

Управление запасами в общем случае состоит в воздействии на соотношение между двумя основными факторами - пополне­нием и расходом. Цель управления - оптимизация некоторого критерия, зависящего от расходов на хранение запасов, стоимо­сти поставок, затрат, связанных с пополнением, штрафов и т. д.

В такой общей постановке подобные задачи могут иметь са­мое разнообразное практическое применение. Например, под за­пасами можно понимать продукцию предприятия, которая произ­водится непрерывно (пополнение) и отгружается потребителям определенными дискретными партиями (расход). При этом спрос на продукцию предполагается наперед заданным (детерминиро­ванный спрос) или подверженным случайным колебаниям (сто­хастическая задача). Управление запасами состоит в определении размеров необходимого выпуска продукции для удовлетворения заданного спроса. Цель - минимизация суммарных затрат на хранение и пополнение запасов.

Под запасами можно понимать запасы сырья или других мате­риалов, поставляемых дискретными партиями (пополнение), ко­торые должны обеспечить непрерывное потребление в процессе производства (расход). Критерием оптимальности могут служить суммарные затраты на хранение запасов, замораживание оборот­ных средств и поставки запасов.

Запасами могут быть товары, поставляемые в магазин опреде­ленными партиями и предназначенные для удовлетворения непрерывного, но подверженного случайным колебаниям поку­пательского спроса. Критерий оптимальности - суммарные за­траты на поставки, хранение запасов и изменение производствен­ного ритма; связи с вариациями спроса.

Запасами могут быть и сезонные товары, сохраняющиеся на складе ограниченной емкости. Товары можно покупать и прода­вать в различных количествах по ценам, меняющимся во време­ни. Задача состоит в определении политики покупок и продаж, обеспечивающих максимум суммарной прибыли, и является при­мером задачи складирования.

Задачи о замене. Одной из важных экономических проблем, с которыми приходится встречаться на практике, является опреде­ление оптимальной стратегии в замене старых станков, произ­водственных зданий, агрегатов, машин и т.д., другими словами, старого оборудования на новое.

Старение оборудования включает его физический и мораль­ный износ, в результате чего растут производственные затраты по выпуску продукции на старом оборудовании, увеличиваются за­траты на его ремонт и обслуживание, а вместе с тем снижаются производительность и так называемая ликвидная стоимость.

Наступает момент, когда старое оборудование более выгодно продать, заменить новым, чем эксплуатировать ценой больших затрат. При этом оборудование можно заменить либо новым обо­рудованием того же вида, либо новым, более совершенным в тех­ническом отношении с учетом технического прогресса.

Оптимальная стратегия замены оборудования состоит в опре­делении оптимальных сроков замены. Критерием оптимальности при определении сроков замены может служить либо прибыль от эксплуатации оборудования, которую следует максимизировать, либо суммарные затраты на эксплуатацию в течение рассматри­ваемого промежутка времени, подлежащие минимизации.

Задачи оптимального управления. Обычно к этому типу задач относят задачи, связанные с нахождением распределен­ного во времени непрерывного управляющего воздействия. В экономике это прежде всего задачи прогнозирования тенденций развития, долгосрочных инвестиций и др. Например задача опти­мизации суммарного фонда потребления, где в качестве управ­ляющего воздействия рассматривается величина инвестиций как функция времени (задача может быть сформулирована с учетом и без учета инвестиционного лага), задача максимизации дисконти­рованного потребления и т.д.

Все упомянутые классы задач (при этом их состав далеко не полон) требуют для своего решения применения специальных ма­тематических методов линейного и нелинейного программирова­ния, динамического программирования, принципа максимума и некоторых других. Составной частью вычислительных работ при решении рассмотренных проблем могут являться задачи решения нелинейных уравнений и их систем, вычисления интегралов, ре­шение дифференциальных уравнений и т.д.

Существует достаточно большое количество численных методов оптимизации. Основные из них можно классифицировать следующим образом:

· по размерности решаемой задачи: одномерные и многомерные;

· по способу формирования шага многомерные методы делятся на следующие виды:

q градиентные:

o по способу вычислений градиента: с парной пробой и с центральной пробой;

o по алгоритму коррекции шага;

o по алгоритму вычисления новой точки: одношаговые и многошаговые;

q безградиентные: с поочередным изменением переменных и с одновременным изменением переменных;

q случайного поиска: с чисто случайной стратегией и со смешанной стратегией;

· по наличию активных ограничений;

· без ограничений (безусловные);

· с ограничениями (условные);

· с ограничениями типа равенств;

· с ограничениями типа неравенств;

· смешанные.

Методы одномерной оптимизации являются базой для некоторых «многомерных» методов. В многомерной градиентной оптимизации строится улучшающая последовательность в зависимости от скорости изменения критерия по различным направлениям. При этом под улучшающей последовательностью понимается такая последовательность х 0 , х 1 , …, х i , …, в каждой точке которой значение критерия оптимальности лучше, чем в предыдущей. В безградиентных методах величина и направление шага к оптимуму при построении улучшающей последовательности формируется однозначно по определенным детерминированным функциям в зависимости от свойств критерия оптимальности в окрестности текущей точки без использования производных (т.е. градиента). Случайные методы используются в задачах высокой размерности. Многомерная условная оптимизация учитывает активные ограничения, выраженные в виде равенств и неравенств. В каждом из рассмотренных направлений имеется большое число методов, обладающих своими достоинствами и недостатками, которые зависят, прежде всего, от свойств функций, экстремум которых ищется. Одним из сравнительных показателей качества метода является количество значений функции, которое нужно вычислить для решения задачи с заданной погрешностью. Чем это число меньше, тем при прочих равных условиях эффективнее метод.

В теоретических и математических задачах принято рассматривать задачи оптимизации как задачи поиска минимума функции. Даже методы имеют общее название – методы спуска. Однако при решении реальных практических задач очень часто встречаются задачи и на максимум (например, максимизация дохода, объема выпуска и т.д.). Конечно, легко перейти от одного вида экстремума к другому путем смены знака у критерия оптимальности, но это делают в прикладных нематематических задачах не всегда, чтобы не терять содержательную нить задачи.

Вопросы к главе 1

1. Почему необходимо использование математики в экономике?

2. Что такое математическая модель?

3. Как строится математическая модель экономического явления и объекта? Приведите пример построения модели.

4. Что такое оптимизация?

5. Какие существуют методы оптимизации?

6. Какие экономические задачи решаются методами оптимизации?

Глава 2. ОСНОВЫ ТЕОРИИ ОПТИМИЗАЦИИ

Термином «оптимизация» обозначают процесс, позволяющий получить уточненное решение. Хотя конечной целью оптимизации является отыскание наилучшего, или «оптимального», решения, обычно приходится довольствоваться улучшением известных решений, а не доведением их до совершенства. Поэтому под оптимизацией понимают скорее стремление к совершенству, которое, возможно, и не будет достигнуто.

Рассматривая некоторую произвольную систему, описываемую m уравнениями с n неизвестными, можно выделить три основных типа задач:

· если m = n , то з адачу называют алгебраической. Такая задача обычно имеет единственное решение;

· если m > n , то задача переопределена, как правило, не имеет решений ;

· если m < n , то задача недоопределена, имеет бесконечно много решений .

В практике чаще всего приходится иметь дело с задачами третьего типа.

Введем ряд определений.

2.1. Параметры плана

Определение. Параметры плана – это независимые переменные параметры, которые полностью и однозначно определяют решаемую задачу.

Это неизвестные величины, значения которых вычисляются в процессе оптимизации. В качестве проектных параметров могут служить любые основные или производные величины, служащие для количественного описания системы.

Например, в качестве параметров могут рассматриваться значения длины, массы, времени, температуры.

Число проектных параметров характеризует степень сложности данной задачи проектирования.

Обозначения. Обычно число проектных параметров обозначают через n, х – сами проектные параметры с соответствующими индексами

х 1 , х 2 , …, х n – n проектных параметров задачи.

2.2. Целевая функция (план)

Определение. Целевая функция – выражение, значение которого стремимся сделать максимальным или минимальным.

Целевая функция позволяет количественно сравнить два альтернативных решения. С математической точки зрения целевая функция описывает некоторую (n+1) -мерную поверхность.

1) Если имеется только один проектный параметр, то целевую функцию можно представить кривой на плоскости (рис. 1).

2) Если проектных параметров два, то целевая функция будет изображаться поверхностью в пространстве трех измерений (рис. 2).

Определение. При трех и более проектных параметрах поверхности, задаваемые целевой функцией, называются гиперповерхностями и не поддаются изображению обычными средствами.

Целевая функция в ряде случаев может быть представлена:

· кусочно-гладкой функцией;

· таблицей;

· только целыми значениями;

· двумя значениями – да или нет (дискретная функция).

В каком бы виде ни была представлена целевая функция, она должна быть однозначной функцией проектных параметров.

В ряде задач оптимизации требуется введение более одной целевой функции. Иногда одна из них может оказаться несовместимой с другой. Примером служит проектирование самолетов, когда одновременно требуется обеспечить максимальную прочность, минимальный вес и минимальную стоимость. В таких случаях конструктор должен ввести систему приоритетов. В результате получается «функция компромисса», позволяющая в процессе оптимизации пользоваться одной составной целевой функцией.

Вопросы к главе 2

1. Что такое параметры плана?

2. Приведите пример параметров плана.

3. Дайте определение целевой функции.

4. Как изображается целевая функция?

Наиболее приемлемый вариант решения, которое принимается на управленческом уровне относительно любого вопроса, принято считать оптимальным, а сам процесс его поиска - оптимизацией.

Взаимозависимость и сложность организационных, социально-экономических, технических и иных аспектов управления производством в настоящее время сводится к принятию управленческого решения, которое затрагивает большое количество разного рода факторов, тесно переплетающихся друг с другом, ввиду чего становится невозможным произвести анализ каждого отдельно с использованием традиционных аналитических методов.

Большинство факторов выступают определяющими в процессе принятия решения, и они (по своей сути) не поддаются какой-либо количественной характеристике. Также существуют и такие, которые практически неизменны. В связи с этим возникла необходимость в разработке особых методов, способных обеспечить выбор важных управленческих решений в рамках сложных организационных, экономических, технических задач (экспертные оценки, исследование операций и методы оптимизации и др.).

Методы, направленные на исследование операций, применяются в целях поиска оптимальных решений в таких областях управления, как организация процессов производства и перевозок, планирование крупномасштабного производства, материальное и техническое снабжение.

Методы оптимизации решений заключаются в исследовании посредством сравнения числовых оценок ряда факторов, анализ которых традиционными методами осуществить нельзя. Оптимальное решение - наилучшее среди возможных вариантов относительно экономической системы, а наиболее приемлемое в отношении отдельно взятых элементов системы - субоптимальное.

Сущность методов исследования операций

Как уже было упомянуто ранее, они формируют методы оптимизации управленческих решений. Их основа - математические (детерминированные), вероятностные модели, представляющие исследуемый процесс, вид деятельности или систему. Данного рода модели представляют количественную характеристику соответствующей проблемы. Они служат базой для принятия важного управленческого решения в процессе поиска оптимально приемлемого варианта.

Перечень вопросов, которые играют существенную роль для непосредственных руководителей производства и которые разрешаются в ходе использования рассматриваемых методов:

  • степень обоснованности выбранных вариантов решений;
  • насколько они лучше альтернативных;
  • степень учета определяющих факторов;
  • каков критерий оптимальности выбранных решений.

Данные методы оптимизации решений (управленческих) нацелены на поиск оптимальных решений для как можно большего количества фирм, компаний либо их подразделений. Они основаны на существующих достижениях статистических, математических и экономических дисциплин (теории игр, массового обслуживания, графиков, оптимального программирования, математической статистики).

Методы экспертных оценок

Данные методы оптимизации управленческих решений применяются, когда задача частично либо полностью не подвержена формализации, а также ее решение не может быть найдено посредством математических методов.

Экспертиза - это исследование сложных особых вопросов на этапе выработки определенного управленческого решения соответствующими лицами, которые владеют специальным багажом знаний и внушительным опытом, для получения выводов, рекомендаций, мнений, оценок. В процессе экспертного исследования применяются новейшие достижения и науки, и техники в рамках специализации эксперта.

Рассматриваемые методы оптимизации ряда управленческих решений (экспертных оценок) эффективны в решении нижеперечисленных управленческих задач в сфере производства:

  1. Изучение сложных процессов, явлений, ситуаций, систем, которые характеризуются неформализованными, качественными характеристиками.
  2. Ранжирование и определение согласно заданному критерию существенных факторов, выступающих определяющими относительно функционирования и развития производственной системы.
  3. Рассматриваемые методы оптимизации особо эффективны в области прогнозирования тенденций развития системы производства, а также ее взаимодействия с внешней средой.
  4. Повышение надежности экспертной оценки преимущественно целевых функций, которые имеют количественный и качественный характер, посредством усреднения мнений квалифицированных специалистов.

И это лишь некоторые методы оптимизации ряда управленческих решений (экспертной оценки).

Классификация рассматриваемых методов

Методы решения задач оптимизации, исходя из числа параметров, можно подразделить на:

  • Методы оптимизации одномерной.
  • Методы оптимизации многомерной.

Их еще называют "численные методы оптимизации". Если быть точным, это алгоритмы ее поиска.

В рамках применения производных методы бывают:

  • прямые методы оптимизации (нулевого порядка);
  • градиентные методы (1-го порядка);
  • методы 2-го порядка и др.

Большая часть методов многомерной оптимизации приближена к задаче второй группы методов (одномерной оптимизации).

Методы одномерной оптимизации

Любые численные методы оптимизации основаны на приближенном либо точном вычислении таких ее характеристик, как значения целевой функции и функций, которые задают допустимое множество, их производные. Так, для каждой отдельной задачи вопрос тносительно выбора характеристик для вычисления может быть решен в зависимости от существующих свойств рассматриваемой функции, имеющихся возможностей и ограничений в хранении и обработке информации.

Существуют следующие методы решения задач оптимизации (одномерной):

  • метод Фибоначчи;
  • дихотомии;
  • золотого сечения;
  • удвоения шага.

Метод Фибоначчи

Для начала необходимо установить координаты т. x на промежутке в качестве числа, равного отношению разницы (x - a) к разнице (b - a). Следовательно, a имеет относительно промежутка координату 0, а b - 1, средняя точка - ½.

Если допустить, что F0 и F1 между собой равны и принимают значение 1, F2 будет равно 2, F3 - 3, …, то Fn = Fn-1 + Fn-2. Итак, Fn - числа Фибоначчи, а поиск Фибоначчи - это оптимальная стратегия так называемого последовательного поиска максимума ввиду того, что она довольно тесно связана с ними.

В рамках оптимальной стратегии принято выбирать xn - 1 = Fn-2: Fn, xn = Fn-1: Fn. При любом из двух интервалов ( либо ), каждый из которых может выступать в качестве суженного интервала неопределенности, точка (унаследованная) относительно нового интервала будет иметь либо координаты , либо . Далее, в качестве xn - 2 принимается точка, которая имеет относительно нового промежутка одну из представленных координат. Если использовать F(xn - 2), значение функции, которое унаследовано от прежнего промежутка, становится возможным сокращение интервала неопределенности и передача в наследство одного значения функции.

На финишном шаге получится прейти к такому интервалу неопределенности, как , при этом средняя точка унаследована от предыдущего шага. В качестве x1 устанавливается точка, которая имеет относительную координату ½+ε, а окончательный интервал неопределенности будет или [½, 1] по отношению к .

На 1-м шаге длина данного интервала сократилась до Fn-1: Fn (с единицы). На финишных шагах сокращение длин соответствующих интервалов представляется числами Fn-2: Fn-1, Fn-3: Fn-2, …, F2: F3, F1: F2 (1 + 2ε). Итак, длина такого интервала, как окончательный вариант примет значение (1 + 2ε) : Fn.

Если пренебречь ε, то асимптотически 1: Fn будет равно rn, при этом n→∞, а r = (√5 - 1) : 2, что приблизительно равно 0,6180.

Стоит отметить, что асимптотически для значительных n каждый последующий шаг поиска Фибоначчи существенно сужает рассматриваемый интервал с вышеуказанном коэффициентом. Данный результат требуется сравнить с 0,5 (коэффициент сужения интервала неопределенности в рамках метода бисекции для поиска нуля функции).

Метод дихотомии

Если представить некую целевую функцию, то для начала потребуется найти ее экстремум на промежутке (a; b). Для этого ось абсцисс делится на четыре эквивалентные части, затем необходимо определить значение рассматриваемой функции в 5 точках. Далее выбирается минимум среди них. Экстремум функции должен лежать в пределах промежутка (a"; b"), который прилегает к точке минимума. Границы поиска сужаются в 2 раза. А если минимум расположен в т. a либо b, то он сужается во все четыре раза. Новый интервал также разделяется на четыре равных отрезка. В связи с тем, что значения данной функции в трех точках были определены на предыдущем этапе, далее требуется вычислить целевую функцию в двух точках.

Метод золотого сечения

Для существенных значений n координаты таких точек, как xn и xn-1 приближены к 1 - r, равное 0,3820, а r ≈ 0,6180. Толчок с данных значений весьма близок к искомой оптимальной стратегии.

Если предположить, что F(0,3820) > F(0,6180), то тогда очерчивается интервал . Однако ввиду того, что 0,6180 * 0,6180 ≈ 0,3820 ≈ xn-1, то в данной точке F уже известна. Следовательно, на каждом этапе, начиная со 2-го, необходимо только одно вычисление целевой функции, при этом каждый шаг сокращает длину рассматриваемого интервала с коэффициентом 0,6180.

В отличие от поиска Фибоначчи, в данном методе не требуется фиксация числа n еще до начала поиска.

«Золотое сечение» участка (a; b) - сечение, при котором отношение его r длины к более крупной части (a; c) идентично отношению большей части r к меньшей, то есть (a; с) к (c; b). Нетрудно догадаться, что r определяется по вышерассмотренной формуле. Следовательно, при существенных n метод Фибоначчи переходит в данный.

Метод удвоения шага

Суть - поиск направления убывания целевой функции, движение в данном направлении в случае удачного поиска с постепенно возрастающим шагом.

Сначала определяем начальную координату M0 функции F(M), минимальное значение шага h0, направление поиска. Затем определяем функцию в т. M0. Далее совершаем шаг и находим значение данной функции в данной точке.

В случае если функция меньше значения, которое было на предыдущем шаге, следует произвести следующий шаг в том же направлении, предварительно увеличив его в 2 раза. При ее значении, которое больше предыдущего, потребуется поменять направление поиска, а затем начать двигаться в выбранном направлении с шагом h0. Представленный алгоритм можно модифицировать.

Методы многомерной оптимизации

Вышеупомянутый метод нулевого порядка не берет в расчет производные минимизированной функции, ввиду чего их использование может быть эффективно в случае возникновения каких-либо трудностей с вычислением производных.

Группу методов 1-го порядка еще называют градиентными, потому что для установления направления поиска применяют градиент данной функции - вектор, составляющими которого выступают частные производные минимизированной функции по соответствующим оптимизированным параметрам.

В группе методов 2-го порядка применяются 2 производные (их использование достаточно ограничено ввиду наличия трудностей в их вычислении).

Перечень методов безусловной оптимизации

При использовании многомерного поиска без применения производных методы безусловной оптимизации следующие:

  • Хука и Дживса (осуществление 2 видов поиска - по образцу и исследующий);
  • минимизации по правильному симплексу (поиск точки минимума соответствующей функции посредством сравнения на каждой отдельной итерации ее значений в вершинах симплекса);
  • циклического координатного спуска (использование в качестве ориентиров поиска координатных векторов);
  • Розенброка (основан на применении одномерной минимизации);
  • минимизации по деформированному симплексу (модификация метода минимизации по правильному симплексу: добавление процедуры сжатия, растяжения).

В ситуации использования производных в процессе многомерного поиска выделяют метод наискорейшего спуска (наиболее фундаментальная процедура минимизации дифференцируемой функции с несколькими переменными).

Также выделяют еще такие методы, которые используют сопряженные направления (Метод Дэвидона-Флетчера-Пауэлла). Его суть - преставление направлений поиска как Dj*grad(f(y)).

Классификация математических методов оптимизации

Условно, исходя из размерности функций (целевых), они бывают:

  • с 1 переменной;
  • многомерные.

В зависимости от функции (линейная или нелинейная) существует большое количество математических методов, направленных на поиск экстремума для решения поставленной задачи.

По критерию применения производных математические методы оптимизации подразделяются на:

  • методы вычисления 1 производной целевой функции;
  • многомерные (1-я производная-векторная величина-градиент).

Исходя из эффективности вычисления, существуют:

  • методы быстрого вычисления экстремума;
  • упрощенного вычисления.

Это условная классификация рассматриваемых методов.

Оптимизация бизнес-процессов

Методы здесь могут использоваться различные, в зависимости от решаемых проблем. Принято выделять следующие методы оптимизации процессов бизнеса:

  • исключения (уменьшение уровней существующего процесса, ликвидация причин помех и входного контроля, сокращение транспортных путей);
  • упрощения (облегченное прохождение заказа, снижение комплексности продуктовой структуры, распределение работ);
  • стандартизации (использование специальных программ, методов, технологий и т. д.);
  • ускорения (параллельный инжиниринг, стимуляция, оперативное проектирование опытных образцов, автоматизация);
  • изменение (перемены в области сырья, технологий, методов работ, кадрового расположения, рабочих систем, объема заказа, порядка обработки);
  • обеспечения взаимодействия (в отношении организационных единиц, персонала, рабочей системы);
  • выделения и включения (относительно необходимых процессов, комплектующих).

Налоговая оптимизация: методы

Российское законодательство предоставляет налогоплательщику весьма богатые возможности сокращения размеров налогов, ввиду чего принято выделять такие способы, направленные на их минимизацию, как общие (классические) и специальные.

Общие методы налоговой оптимизации следующие:

  • проработка учетной политики компании с максимально возможным применением предоставленных российским законодательством возможностей (порядок списания МБП, выбор метода расчета выручки от реализации товара и др.);
  • оптимизация посредством договора (заключение льготированных сделок, четкое и грамотное использование формулировок и т. п.);
  • применение разного рода льгот, налоговых освобождений.

Вторую группу методов также могут использовать все фирмы, однако они все же имеют достаточно узкую область применения. Специальные методы оптимизации налогов следующие:

  • замены отношений (операция, которая предусматривает обременительное налогообложение, замещается другой, которая позволяет достичь аналогичную цель, но при этом использовать льготный порядок налогового обложения).
  • разделения отношений (замена лишь части хозяйственной операции);
  • отсрочки налогового платежа (перенесение момента появления объекта налогообложения на другой календарный период);
  • прямого сокращения объекта налогового обложения (избавление от многих налогооблагаемых операций либо имущества без оказания негативного влияния на основную хозяйственную деятельность компании).